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Summary

This paper is an overview of recent developments in the construction of finite element interpolants, which are
C0-conforming on polygonal domains. In 1975, Wachspress proposed a general method for constructing finite
element shape functions on convex polygons. Only recently has renewed interest in such interpolants surfaced
in various disciplines including: geometric modeling, computer graphics, and finite element computations.
This survey focuses specifically on polygonal shape functions that satisfy the properties of barycentric
coordinates: (a) form a partition of unity, and are non-negative; (b) interpolate nodal data (Kronecker-
delta property), (c) are linearly complete or satisfy linear precision, and (d) are smooth within the domain.
We compare and contrast the construction and properties of various polygonal interpolants—Wachspress
basis functions, mean value coordinates, metric coordinate method, natural neighbor-based coordinates, and
maximum entropy shape functions. Numerical integration of the Galerkin weak form on polygonal domains
is discussed, and the performance of these polygonal interpolants on the patch test is studied.

1 INTRODUCTION

The three-node triangle and the four-node quadrilateral, or quadrangle, are basic element
shapes used in most two-dimensional finite element methods. General polygonal elements,
or n-gons, with more than four vertices are not employed in any conventional finite element
computations. The removal of this restriction has the potential to lead to new developments
in mesh generation and the finite element method. Polygonal finite elements provide greater
flexibility for the meshing of complex geometries, are potentially useful for the modeling of
polycrystalline materials [18], can serve as transition elements in finite element meshes [14],
and are well-suited for material design [13]. Furthermore, such elements can prove to be
useful for satisfying incompressibility in constrained media problems that arise in solid and
fluid mechanics.

In 1975, Wachspress [55] used concepts of projective geometry to develop rational poly-
nomial interpolants for convex polygons. Recently, renewed interest in Wachspress ba-
sis functions [11, 12] and in the construction of barycentric coordinates on n-gons has
emerged [15, 17, 22, 29–35, 50, 52, 53, 57–60]. Apart from finite element applications, the
construction of barycentric coordinates on polygons is of significant interest for surface
parametrization, geometric modeling, and computer graphics [15,16,35].

The purpose of this paper is to present the main developments in the construction of
conforming polygonal interpolants and to explore their use as trial and test functions in a
Galerkin method. There have been a number of recent papers in which different barycentric
approximations on irregular polygons have been proposed, and we primarily focus our
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attention on these advances. The main ingredients of a suitable finite element interpolant
are stated, and a unifying prescription for the construction of polygonal interpolants is
presented to better understand the similarities and distinctions of the various interpolants.
The important issue of numerical integration of the weak form on polygonal domains is
addressed, and the performance of the polygonal interpolants on the patch test is studied.

2 CONFORMING INTERPOLANTS ON IRREGULAR POLYGONS

Consider a polygonal domain Ω ⊂ R2 that is described by n nodes. The ith node is
labeled by pi, and xi ≡ (xi, yi) is used to denote the coordinate of node i. In addition to
vertex-nodes, nodes can also be located along the edges (side- or mid-side nodes), or even
in the interior of the polygon (Figure 1). Any point p with coordinate x ≡ (x, y) ∈ Ω̄
(Ω̄ = Ω ∪ ∂Ω), has a set of associated shape functions φi(x). An interpolation scheme for
a scalar-valued function u(x) : Ω̄ → R can be written as:

uh(x) =
n∑

i=1

φi(x)ui, (1)

where ui are the unknowns at the n neighbors of point p. On using C0 shape functions,
the interpolant uh(x) should satisfy the following properties:

1. Form a partition of unity to assure constant precision, and that φi(x) is non-negative
and bounded:

n∑
i=1

φi(x) = 1, 0 ≤ φi(x) ≤ 1. (2)

2. Interpolate nodal data:
φi(xj) = δij , (3)

where δij is the Kronecker-delta. The above equation indicates that the interpolated
result at a node is identical to the nodal data: uh(xi) = ui. Equation (2) ensures that
the interpolated result is bounded between the minimum and maximum of the nodal
values: mini ui ≤ uh(x) ≤ maxi ui, which is a statement of the discrete maximum
principle and a requirement for the numerical discretization of the diffusion equation.

3. Linear completeness [23] or linear precision:

n∑
i=1

φi(x)xi = x, (4)

which indicates that the shape functions can exactly reproduce a linear function. For
second-order partial differential equations (PDEs), constant and linear precision in
the trial function are sufficient conditions for convergence in a Galerkin method [48].

4. The shape function φi ∈ C∞ within the domain. Along the edges of the polygon, the
interpolant must be piece-wise linear (C0 function):

uh(t) = tu1 + (1 − t)u2, x = tx1 + (1 − t)x2, x ∈ ∂Ω, t ∈ [0, 1]. (5)

The above equation ensures that linear essential boundary conditions can be imposed
exactly in a Galerkin method.
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Figure 1. Nodal discretization of polygonal domains. (a) Square (n = 4); (b)
Square with side- and mid-side nodes (n = 6); (c) Pentagon (n = 5);
(d) Pentagon with side- and mid-side nodes (n = 8); (e) Square with
interior nodes (n = 10); (f) Concave heptagon (n = 7)
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2.1 Construction of Shape Functions using Length and Area Metrics

The polygonal shape functions φi(x) that are treated in this paper are constructed from
a set of non-negative weight functions {w1(x), w2(x), . . . , wn(x)}. Each wi(x) attains its
maximum value at xi and monotonically decreases with increasing distance from xi. The
polygonal shape functions are represented in the general (Shepard) form [45]:

φi(x) =
wi(x)

n∑
j=1

wj(x)
, (6)

and hence by construction the {φi} form a partition of unity.
By imposing further conditions on the form of wi(x), the remaining requirements are

similarly satisfied by construction. In a simple polygon, a vertex pk in Rd is connected to d
other vertices. Let ind(k) denote the collection of nodal indices that are connected to node
pk [60]. First, define a function bi(x) that interpolates nodal data and is C∞ smooth over
the domain Ω and C0 on the boundary segment. In two dimensions, consider functions
rjk(x), which are zero-valued on the boundary segment from pj to pk and positive and
monotonically increasing everywhere else in the domain:

bi(x) = ai

∏
j, k �= i

rjk(x). (7)

A linearly independent set of shape functions {φi} is constructed by choosing φi(x) to be
zero on all boundaries not adjacent to the ith node. This is achieved by letting wi(x) ≡ bi(x)
and using Eq. (6). In Figure 2, the shape function for p3 is zero-valued on the boundaries
that are not adjacent to node p3. The quantity ai is a non-zero constant or a non-zero
function. In two-dimensional convex formulations, the value of ai is the area of the triangle
that is formed by node pi and its incident nodes in ind(i). In general, it is convenient to
set the value of ai to unity.
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Figure 2. Adjacent boundaries. (a) Convex element; (b) Concave element

Alternatively, the function bi(x) can be reformulated such that it depends only on the
neighboring boundaries [35]. This simplified form is valid everywhere in the domain except
where the product of all the rjk(x) functions vanish. For example, in two dimensions

b̂i(x) =
bi(x)∏
rjk(x)

=
ai∏

j,k∈ind(i)

rjk(x)
, (8)
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Figure 3. Shape functions to ensure satisfaction of linear precision within the
domain and on the boundary. (a) Combining shape functions at the
vertices; (b) Combining shape functions on the convex hull

and wi(x) ≡ b̂i(x) is used in Eq. (6) to obtain the shape functions. The above construction
is general enough to be applied to any polytope in Rd, provided that ai and ri1i2...id(x) can
be defined. The shape functions φi(x) derived by applying Eq. (7) are exactly the same as
those derived using Eq. (8), except that the numerical evaluation of the function in Eq. (8)
is undefined on the boundary segment. Shape functions are usually expressed as in Eq. (7),
whereas barycentric coordinates are typically of the form given in Eq. (8).

Method rij(x) ai References
Rational polynomiala A(p, pi, pj) A(pi, pj , pk) [55]
Mean value coordinates A(p, pi, pj) li(x) [15]
Metric coordinate ‖x − xi‖ + ‖x − xj‖ − ‖xi − xj‖ 1 [34]

– interior nodeb ‖x− xi‖ 1 [32]

a The linear triangle and trapezoid shape functions are subsets of this method.
b The ri(x) function depends only on one node.

Table 1. General form of interpolants on polygons

The r- and a-functions are not uniquely prescribed by the shape function requirements.
In Table 1, different values for rij(x) and ai in Eq. (8) for some of the common interpolant
constructions are indicated. On a two dimensional polygon for example, a series of valid
interpolants can be constructed using the following equation:

b̂mn
j (x) =

aj

rm
ij (x)rn

jk(x)
, (9)

which is valid for positive integers m and n. Using this approach, a power-series like solution
on polygonal domains, similar to the R-function construction [42], is conceivable.

The third and fourth requirements, of linear completeness and linear edge behavior, sim-
ilarly need to be satisfied. The interpolants formed using bi(x) and b̂i(x) from Eqs. (7) and
(8) can be combined such that the resulting shape functions are linearly precise. The num-
ber of nodes that are used to determine the weight wi(x) for any specific node i categorizes
the different approaches for the construction of shape functions [15]. The so-called three-
point method depends on the interpolation at the node and its two closest neighbors along
the boundary. The simplest shape function construction that satisfies both the linearity
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Figure 4. Barycentric coordinates. (a) Wachspress’s basis function [35]; (b) Mean
value coordinates [15]

and independence requirements are Wachspress shape functions on a convex polygon [55]
and Floater’s mean value coordinates [15] on a concave polygon. Both these approaches
are three-point methods (Figure 4). A general prescription for five-point barycentric coor-
dinates is outlined by Hormann [22].

Using a slight variation of Hormann’s method, a general form for shape functions, which
satisfy linear independence, linear completeness, and linear edge behavior is constructed.
For each vertex pj , defined by the triangle (pi, pj, pk), the three vertex functions are pre-
scribed entirely by the conditions for reproducing a linear field:

λij(x) + λjj(x) + λkj(x) = 1,
xiλij(x) + xjλjj(x) + xkλkj(x) = x,
yiλij(x) + yjλjj(x) + ykλkj(x) = y. (10)

The weight λij(x) is the linear weight function for node i in the triangle (pi, pj , pk). The new
weight function for node pj is defined as a linear combination of the weighted interpolants
for the nodes:

wj(x) = λji(x)bi(x) + λjj(x)bj(x) + λjk(x)bk(x),

ŵj(x) = λji(x)b̂i(x) + λjj(x)b̂j(x) + λjk(x)b̂k(x), (11)

where bj(x) and b̂j(x) are defined per Eqs. (7) and (8), respectively. The general form of
the weight function is:

ŵj(x) = λji(x)
ai(x)

r(i−1)i(x)rij(x)
+ λjj(x)

aj(x)
rij(x)rjk(x)

+ λjk(x)
ak(x)

rjk(x)rk(k+1)(x)
, (12)

and using the partition of unity, Eq. (2), the shape function for node j is:

φj(x) =
wj(x)

n∑
k=1

wk(x)
=

ŵj(x)
n∑

k=1

ŵk(x)
. (13)

The weight function ŵj(x) depends on the location of five nodes pi−1, pi, pj, pk and pk+1,
where pi−1 is a neighbor of node pi and pk+1 is a neighbor of node k. The resulting shape
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function is smooth wherever rij(x) is non-zero, and the shape functions are also linearly
complete as required by Eq. (4). The result, however, is not necessarily bounded between
zero and one in the domain. The judicious choice of ai that can assure boundedness is the
subject of on-going research.

An alternative approach to ensure linear precision over concave domains or in domains
with interior nodes, uses the set of interpolants {Ri(x)} that are linearly precise within
the convex hull of the set of nodes. Such an n-point approach may be better-suited for
problems with interior nodes, since interior nodes do not have the associated vertices that
are required in the three-point method.

Separate the nodes on the boundary of the convex hull and those in the interior into
two disjoint sets, namely sets A and B, respectively. First, derive the Wachspress shape
functions for the nodes on the convex hull that satisfy linear precision in the entire domain.
They define the {Ri(x)} for all i ∈ A. Also derive the shape functions for the interior nodes
that are linearly independent and bounded, but are not necessarily linearly precise, as {φ̃i}
for all i ∈ B . Split the summation over all the nodes into a sum over each set A and B.
Then, replace the vertex location xj with the weighted sum of the {Ri(xj)} over the set A,
according to Eq. (4), and re-arrange the order of summation:

∑
A
φi(x)xi +

∑
B
φ̃j(x)xj =

∑
A
φi(x)xi +

∑
A

xi

∑
B
φ̃j(x)Ri(xj) =

∑
A
Ri(x)xi = x. (14)

Equating the components of the sum at a node on the convex hull returns a shape function
for that node, which in combination with the shape functions for the interior nodes satisfies
the linear field:

φi(x) = Ri(x) −
∑
B
φ̃j(x)Ri(xj), i ∈ A. (15)

Both φi(x) and Ri(x) are positive over the domain, φi(x) < Ri(x) < 1, but the φi(x) are not
necessarily non-negative. The construction and implementation of methods to adjust the
shape function so that each interpolant is both bounded and linearly precise are presented
in [32,33].

2.1.1 Wachspress shape functions

Using elements of projective geometry, Wachspress constructed polygonal shape functions
on any convex polygonal domain [55]. Warren extended the formulation to three-dimensional
convex polytopes [58]. The conventional linearly precise shape functions for triangles and
trapezoids, and the Wachspress shape functions for convex polygons can be constructed
using a linear rij(x) and setting ai to be constant. The shape functions can be defined
using the area between the nodes pi and pj, and the inserted point p (Figure 5). Hereafter,
for brevity and ease of notation, we denote the point by just p, mindful that it indicates
the position x ≡ (x, y). The Vandermonde determinant in two dimensions is:

rij(x) = A(p, pi, pj) =
1
2

∣∣∣∣∣∣
x y 1
xi yi 1
xj yj 1

∣∣∣∣∣∣ , (16)

and

aj = A(pi, pj , pk) =
1
2

∣∣∣∣∣∣
xi yi 1
xj yj 1
xk yk 1

∣∣∣∣∣∣ . (17)
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Figure 5. Geometric measures. (a) Length; (b) Area

From Eq. (7), the numerator for the triangular shape functions are constructed:

bi(x) = airjk(x) = A(pi, pj, pk)A(p, pj , pk). (18)

The constants ai = aj = ak, and the denominator of the shape function φi(x) is:

airjk + ajrki + akrij = A(pi, pj, pk)
(
A(p, pj , pk) +A(pi, p, pk) +A(pi, pj , p)

)
, (19)

which simplifies to
airjk + ajrki + akrij = A2(pi, pj , pk), (20)

and dividing Eq. (18) by Eq. (20) leads to the well-known expression for triangular shape
functions:

φi(x) =
A(p, pj , pk)
A(pi, pj, pk)

. (21)

The linear shape function for a triangle is also termed as area coordinate or barycentric
coordinate. The numerator is the area of the triangle between points p, pj and pk, and the
denominator is the area of the entire triangle.

The shape function for a quadrilateral can be derived in the element coordinates using
the above method. Given vertices pi, pj, pk and p�, the numerator for the shape function
φi(x) is:

bi(x) = airjkrk� = A(p�, pi, pj)A(p, pj , pk)A(p, pk, p�). (22)

Unlike the triangle, the denominator is only constant in the case when the quadrilateral is
a parallelogram. The shape function is:

φi(x) =
A(pd, pa, pb)A(p, pb, pc)A(p, pc, pd)(

A(p�, pi, pj)A(p, pj , pk)A(p, pk, p�) +A(pi, pj, pk)A(p, pk, p�)A(p, p�, pi)
+A(pj, pk, p�)A(p, p�, pi)A(p, pi, pj) +A(pk, p�, pi)A(p, pi, pj)A(p, pk, p�)

) . (23)

This approach applies to any convex quadrilateral, but the shape functions are only the
same as those derived using the isoparametric transformation on trapezoids [29].

The shape function on any convex domain can be constructed using Wachspress’s for-
mulation. Using Eq. (8), the numerator for node j adjacent to nodes i and k is:

b̂j(x) =
A(pi, pj , pk)

A(p, pi, pj)A(p, pj , pk)
. (24)
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The shape function constructed using b̂j(x) is undefined on the boundaries. The boundary
behavior of a Wachspress shape function is linear and can be defined separately. The
denominator of the shape function is a curve that passes through the intersections of the
continuation of the boundary lines (Figure 6). For a polygon with n nodes the curve defined
by the denominator is order n − 3 and is proven to lie outside the domain of the convex
domain [55]. Numerous examples of shape functions for specific convex polygons can be
found in [12,19,34,35,47,57].

The Wachspress coordinate formulation satisfies linear fields by construction. The origi-
nal b̂j(x) are equal to the transformed linearly precise weightings ŵj(x) that are constructed
using Eq. (12). Again, noting that the coordinate of p is x,

ŵj(x) =
A(pi−1, pi, p)
A(pi−1, pi, pj)

b̂i(x) +
A(pi, p, pk)
A(pi, pj, pk)

b̂j(x) +
A(p, pk, pk+1)
A(pj , pk, pk+1)

b̂k(x)

=
A(pi, pj , pk)

A(pi, pj , p)A(p, pj , pk)
= b̂j(x). (25)

The Wachspress shape functions are the lowest order shape functions that satisfy bound-
edness, linearity, and linear independence on convex shapes [59]. The numerical analysis of
these basis functions [19] and their application to the construction of surface patches [10]
have been explored. Warren [58] has presented its generalization to convex polytopes.
Wachspress coordinates are rewritten in different forms depending on the application.
Dasgupta [11, 12] used symbolic computations to compute the Wachspress basis function,
whereas in [35], a simplified expression for the same is obtained:

φj(x) =
ŵj(x)

n∑
k=1

ŵk(x)
, ŵj(x) =

A(pi, pj, pk)
A(p, pi, pj)A(p, pj , pk)

= 2

(
cotϕj + cotψj

‖x − xj‖2

)
, (26)
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where the last expression is due to Meyer et al. [35], A(a, b, c) is the signed area of triangle
[a, b, c], and ϕj and ψj are shown in Figure 4a.

2.1.2 Concave polygon

Concave domains can not be described using Wachspress convex polygon shape functions,
or an isoparametric transformation. Either the constant ai must be a function or the func-
tion rjk(x) can not be linear. Floater [15] proposed mean value coordinates (barycentric
coordinates on n-gons), which satisfy the shape function requirements, except bounded-
ness, on all two-dimensional concave domains everywhere except along the boundaries [15].
Define aj(x) as the distance between the point p and the node pj. In two dimensions,

aj(x) = ‖x− xj‖ =
√

(x− xj)2 + (y − yj)2. (27)

On using Eq. (8), the numerator for vertex pj with neighbor vertices pi and pk is:

b̂j(x) =
‖x− xj‖

A(p, pi, pj)A(p, pj , pk)
. (28)

Alternatively, shape functions on a concave domain can be constructed using the metric
coordinate method [34]. It is defined using a function that is zero only along a finite
boundary segment. This allows for the construction of a shape function that is bounded
and valid in R2. The boundary function rki(x) can be formulated by exploiting the triangle
inequality—the sum of two edge segments of a triangle is always greater or equal to the
length of the third:

rki(x) = ‖x− xk‖ + ‖x − xi‖ − ‖xi − xk‖. (29)

Now, from Eq. (8), the weight b̂j is:

b̂j(x) =
1(‖x − xk‖ + ‖x − xi‖ − ‖xi − xk‖
)(‖x − xi‖ + ‖x − xj‖ − ‖xj − xi‖

) . (30)

Unlike convex domains, shape functions that are valid on concave domains can not be
defined using a rational polynomial. Each rational polynomial is associated with a specific
projective transformation of a convex polygon [55], and a concave shape can not be formed
from a perspective transformation of a convex shape [8]. The Euclidean measure introduces
a branch point singularity at a re-entrant node that allows for the construction of the shape
function.

The form of the mean value coordinate function presented in Eq. (28) is made linearly
precise using Eq. (12). In the five-point scheme with vertices pi−1, pi, pj , pk, and pk+1, the
influence of nodes pi−1 and pk+1 cancel out in the mean value coordinates [22]. The mean
value coordinate is similar to the Wachspress shape function—both are three-point shape
functions:

ŵj(x) =
‖x− xi‖
A(p, pi, pj)

+
‖x − xj‖A(pi, p, pk)
A(p, pi, pj)A(p, pj , pk)

+
‖x − xk‖
A(p, pj , pk)

= 2
(

tan (αi/2) + tan (αj/2)
‖x − xj‖

)

=
8A(p, pi, pj)/‖x − xj‖(‖x − xi‖+‖x − xj‖

)2−‖xi − xj‖2
+

8A(p, pj , pk)/‖x − xj‖(‖x − xj‖+‖x− xk‖
)2−‖xj − xk‖2

, (31)
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where the second equation is the weight function expression derived by Floater [15], and
the angles αi and αj are shown in Figure 4b. The mean value coordinates are linearly
precise and smooth in any polygonal domain, and bounded in convex polygonal domains.
The boundary segments are defined in the limit and hence are handled separately in the
numerical implementation [22], which is also the case in the computation of Laplace shape
functions (Section 2.2) [52].

The shape functions φi(x) generated using the metric coordinate method are defined in
the entire domain including the boundary, provided Eq. (8) is converted to Eq. (7). The
resulting shape functions are five-point shape functions as defined in Eq. (12), and similar
to mean value coordinates, they are necessarily bounded only in convex shapes. In the
definition of Eq. (30) the constant ai is set to one. A heuristic choice of ai can result in
bounded interpolants which satisfy all of the shape function requirements. The mean value
coordinate method, on the other hand, is bounded only in star shaped polygons and does
not afford the luxury of a free variable.

2.1.3 Polygon with side-nodes

While the mean value coordinates and metric coordinate method are applicable when nodes
are added to a polygonal edge [22, 33, 34], a simpler formulation which assures linearity
and boundedness, based on a projective transformation, can be applied to non-concave
shapes [31]. To illustrate the construction of shape functions when side nodes are added
to a convex polygon, we consider the quadtree data structure. Quadtree is a spatial data
structure based on the recursive decomposition of a square in two dimensions [43]. In
a quadtree, hanging nodes are generated, which leads to incompatibilities in the refined
meshes (Figure 7). The construction of polygonal elements with side nodes [31] is adapted
to quadtree elements with hanging nodes.

Consider the quadtree element A shown in Figure 7a with hanging node a at the mid-
point of the edge 1–2. The procedure presented in [31] is followed to derive the shape
functions on element A. Let the vertex nodes have coordinates: 1(0,1), 2(1,1), 3(1,0) and
4(0,0). The Wachspress (bilinear finite element) shape functions are:

φ̃1(x) = y(1 − x), φ̃2(x) = xy, φ̃3(x) = x(1 − y), φ̃4(x) = (1 − x)(1 − y). (32)

An extra node a is now inserted along the edge 1–2. The boundary is parametrized by s
such that s = 0 at node 1 and s = 1 at node 2. Following [29], we can write

a = s(1 − s), b(x) = 1 − (1 − s)φ̃1(x) − sφ̃2(x), c(x) = φ̃1(x)φ̃2(x), (33a)

φa(x) =
b−√

b2 − 4ac
2a

, (33b)

φ1(x) = φ̃1(x) − sφa(x), (33c)

φ2(x) = φ̃2(x) − (1 − s)φa(x), (33d)

and when node a is a mid-side node (Figure 7a), s = 1/2, and

a =
1
4
, b(x) = 1 − xy

2
− y(1 − x)

2
= 1 − y

2
, c(x) = x(1 − x)y2. (34)



140 N. Sukumar and E.A. Malsch

A

2

34

b

a1

(a) (b)

Figure 7. (a) Quadtree mesh. (a) Hanging nodes; (b) Conforming mesh. The hanging nodes
are labeled as a and b, which lead to a non-conforming finite element approxima-
tion since C0 continuity is lost along the edges containing nodes a and b. One
approach to restore conformity is to connect the hanging nodes to the element
vertices, which however leads to modifications in the quadtree data structure

The shape functions for nodes 1–4 and a can now be written as:

φa(x) = 2 − y − 2

√(
1 − y

2

)2
− x(1 − x)y2, (35a)

φ1(x) = y(1 − x) − φa(x)
2

, (35b)

φ2(x) = xy − φa(x)
2

, (35c)

φ3(x) = φ̃3(x) = x(1 − y), (35d)

φ4(x) = φ̃4(x) = (1 − x)(1 − y). (35e)

The shape function for node a is plotted in Figure 8. On using the above approach, any
number of nodes can be added to an edge [31]. From Eq. (35), the derivatives of φa are:

∂φa

∂x
=

(1 − 2x)y2√(
1 − y

2

)2 − x(1 − x)y2

,
∂φa

∂y
= −1 +

1 − y

2
+ 2xy(1 − x)√(

1 − y

2

)2 − x(1 − x)y2

, (36)

which are unbounded at node a (x = 1/2, y = 1), but the derivatives are square-integrable
in Ω = (0, 1)2.

2.1.4 Polygon with interior nodes

The metric coordinate method is not limited to exterior boundary segments. Interior nodes
can also be described by concave interpolants, and shape functions for interior nodes, which
are similar to bubble functions in the finite element literature, can be formulated [32]. For
an interior node, one point alone is sufficient to define r:

ri(x) = ‖x − xi‖ =
√

(x− xi)2 + (y − yi)2. (37)
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Figure 8. Shape function of mid-side node using the metric coordinate method.
(a) Contour; (b) 3D plot

The weight function in Eq. (8) is defined as

b̂i(x) =
1

‖x− xi‖ , (38)

and on taking wi(x) ≡ b̂i(x) in Eq. (6), the shape functions are determined. These shape
functions are non-zero and well-defined over the entire domain.

Consider the shape function construction for an interior node that is located at the center
of a unit square. The nodes at the vertices of the square are {p1, p2, p3, p4} with coordinates
1(0, 0), 2(1, 0), 3(1, 1), and 4(0, 1). An interior node p5 is located at 5(1/2, 1/2). Recalling
the barycentric form of Wachspress’s shape functions, Eq. (8), b̂5 is:

b̂5(x) =
1√

(x− 1/2)2 + (y − 1/2)2
. (39)

On letting wi(x) = b̂i(x) and applying Eq. (2), shape functions that are bounded but not
linearly precise are obtained. The expression for φ1(x) and φ5(x) are:

φ1(x) =
(1 − x)(1 − y)

√
1 − 2x(1 − x) − 2y(1 − y)√

2xy(1 − x)(1 − y) +
√

1 − 2x(1 − x) − 2y(1 − y)
, (40a)

φ5(x) =
√

2xy(1 − x)(1 − y)√
2xy(1 − x)(1 − y) +

√
1 − 2x(1 − x) − 2y(1 − y)

. (40b)

The shape functions are bounded over the domain, and linear on the edges. The definition
of the barycentric weighting b̂5 with the distance measure leads to C0 behavior, with dis-
continuity in ∇φ5(x) at the interior node. Alternatively, to ensure C∞ continuity within
the polygon, including at the interior node, let

b̂5(x) =
1

‖x − x5‖2 =
1

(x− 1/2)2 + (y − 1/2)2
. (41)



142 N. Sukumar and E.A. Malsch

The shape function for nodes 1 and 5 are:

φ1(x) =
(1 − x)(1 − y)

(
1 − 2x(1 − x) − 2y(1 − y)

)
1 − 2x(1 − x) − 2y(1 − y) + 2xy(1 − x)(1 − y)

, (42a)

φ5(x) =
2xy(1 − x)(1 − y)

1 − 2x(1 − x) − 2y(1 − y) + 2xy(1 − x)(1 − y)
. (42b)

To ensure linear precision and still maintain the interpolation property and linear behavior
along the edges, one needs to modify the shape functions as follows:

φ5(x) =
2xy(1 − x)(1 − y)

1 − 2x(1 − x) − 2y(1 − y) + 2xy(1 − x)(1 − y)
, (43a)

φi(x) = φ̃i(x) − φ5(x)
4

, (i = 1–4), (43b)

where φ̃i(x) are the shape functions for a four-node bilinear element and φ5(x) is taken
from Eq. (42b). The shape functions φ1(x) and φ5(x) are plotted in Figure 9; note that
φ1(x) assumes negative values.
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Figure 9. Linearly precise metric coordinate shape functions. (a) Shape function
for the boundary node; (b) Shape function for the interior node

2.2 Natural Neighbor Shape Functions on Convex Polygons

As indicated in Section 2.1.1, Wachspress [55] was the first to propose rational basis func-
tions (ratio of polynomial functions) on convex polygonal domains. In [52], a polygonal in-
terpolant based on the concept of natural neighbors [46] was proposed. Given a set of nodes
in the plane, the Voronoi diagram partitions the space into closest-point regions (Voronoi
cells). The Delaunay tessellation is the dual of the Voronoi diagram [37]. In Figure 10, a
set of seven nodes is shown and a point p is inserted. The natural neighbors of p are defined
through the Delaunay circumcircles; if p lies within the circumcircle of a Delaunay triangle
t, the nodes that define t are neighbors of p. Two well-known natural neighbor-based inter-
polants are the Sibson coordinate [46] and the Laplace interpolant [4, 7, 21]. In Figure 10,
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Figure 10. Voronoi cell and natural neighbors (filled circle) of point p

the Voronoi cell of p is depicted, and the Laplace shape functions at p are determined using
the Voronoi cell of p. Formally, we define the Laplace shape function as [7]:

φi(x) =
wi(x)

n∑
j=1

wj(x)
, wj(x) =

sj(x)
hj(x)

, (44)

where si(x) is the length of the Voronoi edge and hi(x) = ‖x − xi‖ is the Euclidean distance
from p to node i (Figure 10). The above form of the Laplace shape function can be
established using integral identities [4, 7, 21]. Referring to Figure 10, we can write∫

Ap

∇f dΩ =
∫

∂Ap

fn dΓ (45)

by virtue of Gauss’s theorem. On setting f = 1, we have∫
∂Ap

n dΓ = 0, (46)

which is the Minkowski theorem [20] for convex polytopes. On discretizing the above
integral over the Voronoi cell of point p, we obtain [21]

n∑
i=1

xi − x
hi(x)

si(x) = 0, (47)

and therefore

x =
n∑

i=1

φixi, φi(x) =
wi(x)

n∑
j=1

wj(x)
, wi(x) =

si(x)
hi(x)

, (48)

which is precisely (linear precision) Eq. (4). The Laplace shape function satisfies all the
properties indicated in Equations (2)–(5) [7]. For further details on the prior developments
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related to Laplace shape functions, the interested reader can refer to [49] and the review
article on natural neighbor Galerkin methods by Cueto et al. [9].

We now consider Laplace shape functions on regular n-gons, which provides a natural
means to derive polygonal shape functions on irregular polygons. In a simplex-partition of
a regular polygon, all triangles have a common center and the nodes all lie on the same
circumcircle. The circumcircle of a polygon is the circle inside which the polygon can be
inscribed, and the radius of the circle is the circumradius R. All regular polygons and
regular polyhedra possess a circumradius. For the regular polygons shown in Figure 11,
the vertex-nodes lie on the same circumcircle, and hence all the nodes of a polygon are the
natural neighbors for any point in Ω0. Since φi ≡ φi(ξ) is piece-wise linear on the boundary
∂Ω0, the isoparametric mapping given in Eq. (48) is used to obtain the shape functions
on irregular (convex) polygon. In Figures 12–12c, the Voronoi polygon for a point p in
a pentagon, hexagon and a nonagon are shown; the vertices of the Voronoi polygon are
located at the center of the Delaunay circumcircle of triangle (p, pi, pj). Since φi ≡ φi(ξ)
is piece-wise linear on the boundary ∂Ω0, the isoparametric mapping given in Eq. (48) is
used to obtain the shape functions on irregular (convex) polygon. The measures si and hi

for a regular hexagon are shown in Figure 12d.

ξ2

ξ1
Ω 0

(a)

ξ2

ξ1Ω 0

(b)

1ξ

2ξ

Ω0

(c)

1ξ

2ξ

Ω0

(d)

Figure 11. Reference elements (pentagon, hexagon, heptagon, and octagon) in 2D.
This is a generalization of triangular- and quadrilateral-FEM to irreg-
ular (convex) n-gons
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Figure 12. Laplace shape function. (a), (b), (c) Delaunay circumcircles and
Voronoi cell for p in a pentagon, hexagon, and nonagon; (d) Length
measures in the definition of the Laplace shape function

The above construction is a generalization of finite elements to convex n-gons. The
barycentric coordinate for a triangle are unique. On a bi-unit square, Laplace, Wachspress,
and finite element shape functions are identical, but the mean value coordinate is dis-
tinct [15]. Different barycentric forms on the square lead to bilinear shape functions, which
are the product of one-dimensional Lagrange interpolants. The use of barycentric forms
in 1D has been recently studied. In [5], the construction and merits (compact representa-
tion and computational efficiency) of barycentric one-dimensional Lagrange interpolation
was presented. For (n − 1)th order precision in 1D, consider n nodes that are located
at x1, x2, . . . , xn. The shape function φi(x) can be written as in Eq. (6) with the weight
function wi(x) given by [5]

wi(x) =
bi

x − xi
, bi =

1
∏

k �=i

(xi − xk)
, i = 1, 2, . . . , n. (49)

In the case of linear interpolation in 1D, the above weights are equivalent to those obtained
using the Laplace shape function [51]. Laplace and Wachspress shape functions are the
same on regular polygons [52]. Numerical tests have also revealed that on circumscribable
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polygons (vertices lies on a circle), the Sibson coordinate [46], Laplace, and Wachspress
shape functions are all identical. The discrete harmonic weight , which was introduced by
Pinkall and Polthier [38] in the computation of minimal surfaces, is the solution to the
minimization of the Dirichlet integral. The expression for the Laplace shape function [7] is
also identical to the discrete harmonic weight , which is proven below.

Proof. Referring to Figure 13, sj(x) is the Voronoi edge length associated with node pj and
point p, and the vertices pi, pj and pk. The Voronoi edge length can also be written in
terms of the geometric measures shown in Figure 5. The circumradius of a triangle defined
by vertices (p, pi, pj) is:

Rij(x) =
‖x − xi‖‖x − xj‖‖xi − xj‖

4A(p, pi, pj)
, (50)

and the Voronoi edge length sj(x) is then

sj(x) =

√
R2

ij(x) − 1
4
‖x − xj‖2 +

√
R2

jk(x) − 1
4
‖x − xj‖2. (51)

The Laplace weight function wj(x) = sj(x)/‖x − xj‖ that is defined in Eq. (44) is now
given by

4wj(x) =

√
(‖x − xi‖‖xi − xj‖)2 − 4A2(p, pi, pj)

A(p, pi, pj)

+

√
(‖x− xk‖‖xj − xk‖)2 − 4A2(p, pj , pk)

A(p, pj , pk)

=
‖x− xi‖‖xi − xj‖ cos βi

A(p, pi, pj)
+

‖x − xk‖‖xj − xk‖ cos γj

A(p, pj , pk)
, (52)

where the angles βi and γj are shown in Figure 13. Since

A(p, pi, pj) =
1
2
‖xi − xj‖‖x − xi‖ sin βi, A(p, pj , pk) =

1
2
‖xj − xk‖‖x − xk‖ sin γj , (53)

Eq. (52) can be written as

4wj(x) =
2 cos βi

sinβi
+

2cos γj

sin γj
, (54)

and therefore
wj(x) =

cot βi + cot γj

2
, (55)

which is the discrete harmonic weight [38].

The above construction on convex polygons has been adapted to conforming approx-
imation on weakly convex polygons (quadtree meshes) [53]. Referring once again to the
quadtree element A shown in Figure 7a, the Laplace shape function φa for node a is con-
structed. An isoparametric transformation of the pentagon in Figure 11a to element A is
used. The plot of the shape function is illustrated in Figure 14. The shape function φa is
C∞ within element A and is C0 (piece-wise linear behavior) along the edge 1–2 [53].
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Figure 13. Equivalence of Laplace and discrete harmonic weight functions
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Figure 14. Shape function of mid-side node using an isoparametric transformation.
(a) Contour; (b) 3D plot

The conforming Laplace interpolant on quadtree meshes has been used to solve Poisson
problems with sharp gradients and corner singularities [53]. However, an issue that demands
further investigation is that the inverse of the Jacobian does not exist (det J = 0) at x = xa

(Figure 14). This degeneracy arises since a convex polygon is mapped to a square with
multi-nodes, and the derivatives blow up at node a. The patch test is passed to O(10−10)
on even refined grids [53], which suggests that the numerical integration errors are bounded.
Furthermore, an eigenanalysis in Section 4.2 reveals that the stiffness matrix of the quadtree
element A in Figure 7a has no spurious modes.

2.3 Maximum Entropy Approximant

In the previous sections, we have described the construction of different polygonal inter-
polants. The restrictions of linear completeness and partition of unity in Eqs. (2) and (4)
do not prescribe unique shape functions for any polygon with more than three nodes. By
deriving shape functions from a constrained optimization problem instead of the approach
presented in Sections 2.1 and 2.2, a more general methodology to construct scattered data
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approximants is conceivable. To this end, elements from approximation theory and in-
formation theory are utilized, which can potentially lead to new insights and the ability
to design interpolation and approximation schemes by using suitable constraints in op-
timization problems. In [50], the least-biased approximant or equivalently the one that
maximizes the Shannon entropy [24] is derived. We recently became aware of the work
of Arroyo and Ortiz [3] who have used the maximum entropy principle to construct local
meshfree approximation schemes.

In information theory, the notion of entropy as a measure of uncertainty or incomplete
knowledge was introduced by Shannon [44]. The Shannon entropy of a discrete probability
distribution is:

H(p) = −
n∑

i=1

p(xi) log
(
p(xi)

)
, (56)

where pi ≡ p(xi) is the probability of the occurrence of the event xi, and the above form
of the function H(·) satisfies the axiomatic requirements of an uncertainty measure [28].
Jaynes [24] proposed the maximum entropy (uncertainty) principle as a means for least-
biased statistical inference when insufficient information is available. It provides a maxi-
mally non-committal distribution that is consistent with the given data. Both the max-
imum entropy concentration theorem and Wallis’s combinatorial argument substantiate
this claim [25, 26, 41]. The MAXENT principle has been applied to many problems in the
applied sciences and engineering [27]. The Shannon measure of uncertainty is one of the
first entropy measures proposed within probability theory. More recently, several general
families of entropy measures have been introduced, among which, the Rényi and Tsallis
measures [40,54] are two of the most prominent generalizations of Shannon entropy.

As an example of a MAXENT formulation, consider a random variable x with possible non-
negative real values x1, x2, . . . , xn. Assume that the probability pi of value xi is unknown,
but the expected value E(x) is known. Then, we determine pi by solving the following
problem [24]:

max
p

(
H(p) = −

n∑
i=1

pi log pi

)
, (57a)

n∑
i=1

pi = 1, (57b)

n∑
i=1

pixi = E(x). (57c)

First, we establish a link between the maximum entropy formulation and the data
approximation problem. Consider a scattered set of nodes in R2 (Figure 1), with xi denoting
the nodal coordinate of node i. Consider the introduction of a point p with coordinate x
within the convex hull of the set of nodes (Figure 1). The shape function value φi at the
point p is viewed as the probability of influence of node i at p; on a convex polygon, as
p approaches node i (x → xi), φi → 1 and φj → 0 for j 	= i. The maximum entropy
formulation for the shape functions in R2 (extends to R3) is as follows: find φi ≥ 0 (for
ease of notation, we suppress the spatial dependence in φi) as the solution of the following
constrained optimization problem:

max
φ

(
H(φ) = −

n∑
i=1

φi log φi

)
, (58a)
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subject to the linear reproducing conditions:

n∑
i=1

φi = 1, (58b)

n∑
i=1

φixi = x, (58c)

n∑
i=1

φiyi = y. (58d)

Let λr (r = 0, 1, 2) be the Lagrange multipliers associated with the three constraints,
and we set the first variation of the augmented Lagrangian to zero [24]:

δ

[
n∑

i=1

−φi log φi + λ0

(
1 −

n∑
i=1

φi

)
+ λ1

(
x−

n∑
i=1

φixi

)
+ λ2

(
y −

n∑
i=1

φiyi

)]
= 0. (59)

On carrying out the above variation and letting λ0 = logZ − 1 [24] (Z is used to denote
the partition function in statistical mechanics), the shape functions φi can be written as:

φi =
e−λ1xi−λ2yi

Z
≡ wi

n∑
j=1

wj

, Z =
n∑

j=1

e−λ1xj−λ2yj , (60)

where we note that the MAXENT shape functions are ratios of exponential functions, and
they assume the partition of unity form form given in Eq. (6). The MAXENT shape functions
are also continuously differentiable in the interior of the domain. On substituting Eq. (60)
in Eq. (58), we obtain the following non-linear equations for λ1 and λ2:

f1(λ1, λ2) =

n∑
i=1

e−λ1xi−λ2yixi

Z
− x = 0, (61a)

f2(λ1, λ2) =

n∑
i=1

e−λ1xi−λ2yiyi

Z
− y = 0, (61b)

and on solving for λ1 and λ2, the shape functions φi are obtained from Eq. (60).
Using Newton’s method directly to solve the non-linear equations in Eq. (61) will, in

general, not lead to convergence. Agmon et al. [1, 2] recast the original (primal) problem
into one (dual problem) in which the Lagrange multipliers are determined as the set that
minimizes a convex scalar potential function F (λ1, λ2). Letting

x̃i = xi − x, ỹi = yi − y, (62)

the linear reproducing conditions in Eq. (58) become

n∑
i=1

φix̃i = 0,
n∑

i=1

φiỹi = 0. (63)
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Now,

φi =
e−λ1x̃i−λ2ỹi

Z̃
, Z̃(λ1, λ2) =

n∑
j=1

e−λ1x̃j−λ2ỹj , (64)

and instead of Eq. (61), we have [2]

f1(λ1, λ2) =
∂(log Z̃)
∂λ1

= −

n∑
i=1

e−λ1x̃i−λ2ỹi x̃i

Z̃
= 0, (65a)

f2(λ1, λ2) =
∂(log Z̃)
∂λ2

= −

n∑
i=1

e−λ1x̃i−λ2ỹi ỹi

Z̃
= 0. (65b)

The vector field f is conservative with scalar potential f = ∇ log Z̃(λ1, λ2) ≡ ∇F (λ1, λ2) [2],
and hence the dual problem is: find (λt

1, λ
t
2) such that

F = log Z̃(λt
1, λ

t
2) is minimized. (66)

The algorithm to solve Eq. (66) consists of an initial guess, a suitable search direction
(steepest descent), and a scalar α that provides a measure of the distance to be traversed
along the search direction at each iteration step. Let λk ≡ (λk

1 , λ
k
2)

T be the solution at the
kth iteration; the initial guess is λ0. Given the solution at iteration k, the update for the
Lagrange multipliers is [1]:

λk+1
r = λk

r + α∆λk
r , ∆λk

r = −∇F, (67)

where α is determined through the condition that F (λk+1
1 , λk+1

2 ) attains a minimum along
the search direction. A search algorithm to bracket the minimum [39] of F is used to find
α with a starting guess λ0 = 0 for all points in the domain. The convergence criterion
at iteration k is: ‖∇F‖{k} < ε; ε = 10−7 is used in the numerical computations. Further
details on the numerical algorithm and its implementation are provided in [50]. As an
alternative to the method of steepest descent that was adopted in [50], the use of non-linear
conjugate gradient methods [36] to compute the search direction leads to better efficiency
and faster convergence.

The maximum entropy shape functions satisfy all the properties indicated in Equa-
tions (2)–(5). They are identical to bilinear finite element shape functions on a square, and
are smooth and bounded within the convex hull of a set of nodes [50]. To illustrate a simple
closed-form computation, consider one-dimensional approximation in Ω = (0, 1) with three
nodes located at 1(0, 0), 2(1/2, 0), and 3(1, 0). The MAXENT solution using Eq. (60) is:

φi =
e−λ1xi

3∑
j=1

e−λ1xj

, (68)

where λ1 is the solution of the equation

3∑
i=1

φixi = x. (69)
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Figure 15. Maximum entropy shape functions in one-dimension

On carrying out the algebraic computations, the following solution for φi is obtained:

φ1(x) =
1

1 + η + η2
, φ2(x) =

η

1 + η + η2
, φ3(x) =

η2

1 + η + η2
, (70a)

where

η ≡ η(x) =
2x− 1 +

√
12x(1 − x) + 1

4(1 − x)
. (70b)

These shape functions are depicted in Figure 15. Note that φi(1/2) = 1/3 ∀i, and since
interpolation is not attained at x = 1/2, an approximant is obtained. Referring once
again to the quadtree element in Figure 7a, the MAXENT shape function for the hanging
node is constructed. The shape function for node a and the maximum entropy distribution
are shown in Figure 16. By construction, the maximum entropy formalism yields {φi}
that are smooth and also the flattest possible distribution. Since along the top edge, the
one-dimensional expressions given in Eq. (70) are valid, we obtain smoothness but lose
interpolation at node a as well as the piece-wise linear behavior along the edge containing
the hanging node.

In Section 2.1.4, the metric coordinate method was used to determine shape functions
for polygons with interior nodes. The maximum entropy approach provides an elegant
means to determine shape functions within a polygonal domain with nodes at the vertices
and in its interior (Figure 1e). On convex polygons with only vertex nodes, an interpolant
is obtained, but on a weakly convex polygon (quadtree mesh) or in a polygon with interior
nodes, an approximant is realized. In this formulation, only the nodal coordinates are used,
and neither the connectivity of the nodes nor any user-defined parameters are required—the
defining characteristics of a meshfree approximant . The interpolation and piece-wise linear
behavior on the boundary of convex polygons permits this approximation to be compatible
on the boundary with finite elements or natural-neigbor based interpolation schemes [9].



152 N. Sukumar and E.A. Malsch

(a)

Hmax
1.6
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

a

(b)

Figure 16. MAXENT computations on element A. (a) φa; (b) Maximum entropy
distribution

The maximum entropy shape functions can also be viewed as a particular form of asym-
metric linearly precise Gaussian radial basis functions [6]. As in the previous example,
where interpolation was not met at the mid-side node, the MAXENT shape functions are non-
interpolating at the interior node. The square with an interior node in its center is once
again considered. Plots of the shape function for the interior node are shown in Figure 17.
The shape function is smooth, φ5(x) vanishes on the boundary of the square, and at the
interior nodal location, all the shape functions assume the same value: φi(1/2, 1/2) = 0.2
(i = 1–5).

3 NUMERICAL INTEGRATION OF THE WEAK FORM

Consider the Poisson equation with homogeneous essential boundary conditions:

−∇2u = f in Ω, u = 0 on ∂Ω. (71)

The weak form of the above boundary-value problem is:∫
Ω

∇δu · ∇u dΩ =
∫
Ω

δuf dΩ ∀δu ∈ V0, (72)

where u and δu are trial and test approximations, respectively, and V0 is the Sobolev space
with functions that have square-integrable derivatives in Ω and vanishing values on ∂Ω.

In a Galerkin procedure, the trial and test approximations are chosen from a finite-
dimensional space V h

0 ⊂ V0. The trial function uh and the test function δuh are of the form
given in Eq. (1). On substituting these in Eq. (72), and using the arbitrariness of nodal
variations, we obtain the following system of linear equations:

Kd = f , Kij =
∫
Ω

∇φi · ∇φj dΩ, fi =
∫
Ω

φif dΩ, (73)
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Figure 17. Maximum entropy shape function for an interior node. (a) Contour;
(b) 3D plot

where d is the vector of nodal unknowns. Let Ω̄ be discretized by a set of non-overlapping
polygonal elements, i.e., Ω̄ = ∪M

k=1Vk. Numerical integration on Vk is required to compute
Kij and fi in Eq. (73). To this end, three approaches are possible:

1. Integration on the polygonal element Vk by partitioning it into triangles and then
using standard quadrature rules on a triangle.

2. Partitioning the reference element in Figure 11 into n triangles and then performing
numerical quadrature on each triangle; or

3. Development of polynomial-precision quadrature rules on irregular polygons. On
combining elements of group theory and numerical optimization, a class of cubature
rules for triangles was proposed by Wandzura and Xiao [56], and the extension of this
approach for the design of cubature rules on irregular n-gons holds promise.

In this study, the first and second approaches are tested, i.e., numerical integration is
performed by sub-dividing the physical element or the reference element, into triangles.
Since the shape functions in the Wachspress, mean value, metric coordinate, and MAXENT
interpolation methods are directly computed in the Cartesian coordinate system, the use of
the physical element for the integration is a natural choice, whereas for the Laplace shape
functions, integration on the reference element is suitable. If the numerical integration is
carried out by partitioning the physical element, then the integration of a scalar function
f over Vk is written as [52]:

∫
Vk

f dΩ =
n∑

j=1

∫
V

�j
k

f dΩ =
n∑

j=1

1∫
0

1−ξ∫
0

f |Jj
1| dξdη, (74)

and a nsp-point quadrature rule on each reference right-triangle is used to compute the
last integral. In the above case, for a given quadrature point, x =

∑3
i=1Nixi is used,

where Ni are the finite element shape functions for a three-node triangle (Figure 18a).
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If the numerical integration is performed by partitioning the reference elements shown in
Figure 11, then the following transformations are performed to integrate f [52]:

∫
Vk

f dΩ =
∫
Ω0

f |J2|dΩ =
n∑

j=1

∫
Ω

�j
0

f |J2|dΩ =
n∑

j=1

1∫
0

1−ξ∫
0

f |Jj
1||J2| dξdη. (75)

In Eq. (75), the local coordinate ξ in the reference element is obtained via the isoparametric
transformation ξ =

∑3
i=1Niξi, which enables the Laplace shape functions to be readily

computed. This approach parallels that used in classical finite elements. The sequence of
transformations used in this scheme are illustrated in Figure 18b.

Ωe

N
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ξ

η

p

p

y

x
(a)

ξ1

ξ2

Ωe

Ω 0

ξ

η

p
p

0

p

N
FEM

y

x

φ lap

(b)

Figure 18. Numerical integration schemes. (a) Partition of the physical element;
(b) Partition of the reference element [52]
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4 NUMERICAL RESULTS

The construction of polygonal shape functions and their use within a Galerkin method is
explored. First, the shape functions are plotted on a few polygonal domains, and then
numerical results for the patch test on polygonal meshes are presented. In the latter, L2(Ω)
and energy error norms are used:

‖u− uh‖L2(Ω) =

√√√√∫
Ω

(
u− uh

)2
dΩ, ‖u− uh‖E(Ω) =

√√√√∫
Ω

(
u,i − uh

,i

)(
u,i − uh

,i

)
dΩ, (76)

where (·),i = ∂(·)
∂xi

, and u and uh are the exact and the finite element solutions, respectively.

4.1 Polygonal Shape Functions

The Wachspress, mean-value, metric, Laplace, and maximum entropy shape functions are
denoted by φwsp

i , φmvc
i , φmcm

i , φlap
i , and φmxt

i , respectively. Consider the pentagonal ele-
ment shown in Figure 1c. In Figure 19, the shape function for node 5 using the different
interpolation methods is plotted. The maximum value of φ5 in each case is unity, and φ5

is linear along the edges that include node 1.
As a second example, consider the weakly convex eight-noded element shown in Fig-

ure 1d. The Laplace and metric coordinate methods are used to compute the shape func-
tions. In Figure 20, the shape functions for the mid-side node and for a side-node are
depicted.

Shape function computations for concave elements are performed using the metric co-
ordinate method and Floater’s mean value coordinates. In the numerical implementation,
the mean value coordinates are evaluated using the weight function expressions presented
by Hormann [22]:

φj(x) =
wj(x)

n∑
k=1

wk(x)
, wj(x) =

tan (αi/2) + tan (αj/2)
‖x − xj‖ , (77a)

tan
αi

2
=

‖x − xi‖‖x− xj‖ − (x− xi) · (x− xj)
2A(pi, pj , p)

, (77b)

tan
αj

2
=

‖x − xj‖‖x − xk‖ − (x − xj) · (x − xk)
2A(pj , pk, p)

, (77c)

where the angles αi and αj are shown in Figure 4b. Consider a four-node element with
nodes located at: 1(0, 0), 2(1, 0), 3(1, 1), and 4(0.5, .25). In Figure 21, the shape function
for node 4 is plotted for the above element as well as for the concave element depicted in
Figure 1f. Using the metric coordinate method, φ4(x) is bounded in Figure 21a, but φ4(x)
exceeds unity in the vicinity of node 4 in the plot shown in Figure 21b. In Figures 21c and
21d, the plots using the mean value coordinates are illustrated.

4.2 Patch Test

The patch test for the Laplacian operator is carried out: ∇2u = 0 in Ω = (−1, 1)2, with
u = g(x) = x1 + x2 imposed on the boundary of the bi-unit square. The exact solution is:
u(x) = x1 + x2. In the analyses, different types of meshes are considered. In Figures 22a–
22c, convex polygonal elements are shown, whereas quadtree meshes are illustrated in
Figures 22d–22f. The hanging nodes are labeled in the above figures. Meshes with concave
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Figure 19. Shape function for node 5 in a pentagon. (a) Wachspress; (b) Mean
value; (c) Metric; (d) Laplace; (e) MAXENT

elements are presented in Figures 22g and 22h. In the numerical computations, a twenty-
five point (nsp = 25) quadrature rule is used within each partitioned sub-triangle [52].
For the Laplace shape functions, numerical integration is done on the reference element
(Figure 18b), whereas for all other interpolation schemes, the physical element (Figure 18a)
is used in the numerical integration. The relative L2 and energy error norms for the convex
polygonal elements are presented in Table 2. The Laplace interpolant provides the most
accurate results on the patch test with O(10−8)–O(10−7) errors.



Recent Advances in the Construction of Polygonal Finite Element Interpolants 157

φ2
lap

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

2

(a)

φ4
lap

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

4

(b)

φ2
mcm

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

2

(c)

φ4
mcm

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

4

(d)

Figure 20. Shape functions for mid-side node and side-node in a weakly convex polygon. (a),
(b) Laplace shape functions; (c), (d) Metric coordinate method

The performance of metric coordinate, mean value coordinate, and the Laplace shape
functions on quadtree meshes is compared in Table 3. On quadtree meshes, the Laplace
interpolant was the most accurate with O(10−10) error in the relative L2(Ω) and energy
error norms. To investigate the properties of the stiffness matrix (linear elasticity) on
quadtree meshes, the five-node element A shown in Figure 7a is considered. The finite-
dimensional eigenvalue problem for the stiffness matrix is: Kd = λd. The material prop-
erties used are: E = 1, ν = 0.3, and plane strain conditions are assumed. On using the
Laplace interpolant as trial and test functions, the solution for the eigenvalues of K is:
λ = {0, 0, 0, 0.567, 0.575, 0.678, 0.685, 1.227, 1.409, 1.941}, whereas with the metric coordi-
nate method, λ = {0, 0, 0, 0.567, 0.577, 0.679, 0.683, 1.150, 1.587, 2.102} is obtained. The
quadrature scheme used was sufficient to yield a well-conditioned system. The three zero-
eigenvalues correspond to the physical (rigid-body) modes, and λi is positive for i = 4–10,
which indicates that K has full rank and the absence of spurious modes.

The numerical integration errors are the cause for the loss in accuracy on the convex
and weakly convex (quadtree) meshes. On using the Laplace shape function, the results
can be further improved by performing a partitioning of each sub-triangle (m divisions on
each edge) of the reference polygon. This results in nm2 additional triangles for an n-gon.
On using m = 3, the results for the relative L2(Ω) error norm on meshes a–c are O(10−16),
O(10−13), and O(10−12), respectively, whereas the relative energy error norms are an order
less in each case. The results for the relative L2(Ω) and energy error norms on the quadtree
meshes d–f are O(10−16) and O(10−15), respectively. In Figure 23a, the integration cells on
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Figure 21. Shape functions in non-convex elements. (a), (b) Metric coordinate
method; (c), (d) Mean value coordinates

a reference pentagon are shown, and the partitioning of the elements in the meshes shown
in Figures 22a and 22d are illustrated in Figures 23b and 23c, respectively.

The relative error norms obtained on meshes with concave elements are presented in
Table 4. The mean value coordinates are used to evaluate the shape functions on convex
and concave elements. The results for the relative L2(Ω) and energy error norm on these
meshes are of O(10−4).

5 CONCLUDING REMARKS

In this paper, we have summarized the past developments and recent advances in the con-
struction of polygonal finite elements interpolants. The shape functions were required to
form a partition of unity, satisfy linear precision, be non-negative on convex domains, and
be strictly linear on the boundary of the polygonal domain. A general prescription for
the construction of polygonal interpolants was presented, and where appropriate, links to
known shape functions were provided. The Wachspress, mean-value, and Laplace shape
functions fall within the category of three-point schemes [22]. The Laplace shape function
was shown to be identical to the discrete harmonic weight , which was introduced by Pinkall
and Polthier [38]. The construction of maximum entropy shape functions [50] via a con-
strained optimization problem (Jaynes’s maximum entropy principle [24]) was distinct from
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Figure 22. Patch test. (a)–(c) Convex polygonal meshes a, b, and c with 8, 22, and 156
nodes, respectively; (d)–(f) Quadtree meshes d, e, and f with 14, 19, and 52
nodes, respectively; (g),(h) Concave polygonal meshes g and h with 7 and 11
nodes, respectively

the other polygonal interpolants. The plots of these polygonal shape functions on convex,
weakly convex (quadtree meshes), and concave elements were presented.

Numerical studies on the patch test for convex polygonal meshes, quadtree meshes,
and meshes with concave elements were performed. Patch test results using the Laplace
interpolant were the most accurate, with relative L2(Ω) error norm of O(10−8) and O(10−10)
on convex polygonal meshes and quadtree meshes, respectively. On meshes with concave
elements, the mean value coordinate yielded relative L2(Ω) and energy error norms of
O(10−4). Mesh generation using polygonal elements and the use of polygonal interpolants
in finite element computations holds promise. Further numerical studies and mathematical
analysis of these interpolants is required to develop a more complete understanding of
their accuracy, robustness, and convergence in the numerical solution of partial differential
equations.
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Wachspress Mean value coordinate Laplace
Meshes ‖u−uh‖L2(Ω)

‖u‖L2(Ω)

‖u−uh‖E(Ω)

‖u‖E(Ω)

‖u−uh‖L2(Ω)

‖u‖L2(Ω)

‖u−uh‖E(Ω)

‖u‖E(Ω)

‖u−uh‖L2(Ω)

‖u‖L2(Ω)

‖u−uh‖E(Ω)

‖u‖E(Ω)

a 8.8 × 10−6 2.4 × 10−5 3.5 × 10−3 9.1 × 10−3 5.4 × 10−11 1.5 × 10−10

b 2.0 × 10−4 1.7 × 10−4 8.2 × 10−4 6.3 × 10−3 4.0 × 10−9 1.9 × 10−8

c 1.1 × 10−4 2.5 × 10−3 2.6 × 10−4 4.0 × 10−3 7.7 × 10−9 1.8 × 10−7

Table 2. Relative L2 and energy error norms for the patch test on convex polygonal meshes

Metric coordinate Mean value coordinate Laplace
Meshes ‖u−uh‖L2(Ω)

‖u‖L2(Ω)

‖u−uh‖E(Ω)

‖u‖E(Ω)

‖u−uh‖L2(Ω)

‖u‖L2(Ω)

‖u−uh‖E(Ω)

‖u‖E(Ω)

‖u−uh‖L2(Ω)

‖u‖L2(Ω)

‖u−uh‖E(Ω)

‖u‖E(Ω)

d 9.9 × 10−6 5.3 × 10−5 2.4 × 10−5 9.1 × 10−5 9.9 × 10−11 3.2 × 10−10

e 1.0 × 10−5 6.0 × 10−5 2.3 × 10−5 1.1 × 10−4 8.7 × 10−11 4.0 × 10−10

f 4.0 × 10−6 5.1 × 10−5 1.2 × 10−5 9.3 × 10−5 6.3 × 10−11 3.9 × 10−10

Table 3. Relative L2 and energy error norms for the patch test on quadtree meshes

(a) (b) (c)

Figure 23. Improved numerical integration scheme. (a) Partition of the refer-
ence pentagon; (b) and (c) Mapped integration cells for polygonal and
quadtree meshes

Metric coordinate method

Meshes
‖u−uh‖L2(Ω)

‖u‖L2(Ω)

‖u−uh‖E(Ω)

‖u‖E(Ω)

g 2.2 × 10−4 6.5 × 10−4

h 1.5 × 10−4 6.2 × 10−4

Table 4. Relative L2 and energy error norms for the patch test on meshes with concave
elements
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