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Abstract. [In this paper, recent advances in meshfree approximations, computational
geometry, and computer graphics are described towards the development of polygonal in-
terpolants. A particular and notable contribution is the use of meshfree (Laplace) basis
functions that are based on the concept of natural neighbors. These are defined on a
canonical element and an affine map is used to construct conforming approzimations on
convex polygons. The Laplace shape functions are non-negative, interpolates nodal data,
and are linear on the boundary of the domain which permits the direct imposition of es-
sential boundary conditions. We adapt the above construction on polygonal elements to
quadtree meshes to obtain C°(Q)) admissible approzimations along edges with “hanging
nodes.” Numerical examples are presented to demonstrate the accuracy and performance
of the polygonal and h-adaptive finite element methods.
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1 INTRODUCTION

Polygonal finite elements provide greater flexibility in the meshing of complex geome-
tries (e.g., biomechanics), are of potential use in the modeling of polycrystalline materials,
useful as a transition element in finite element meshes [1], and are suitable in material
design [2]. However, the development of finite elements on irregular polygons has been
limited so far. Wachspress [3] proposed rational basis functions on polygonal elements,
but only of late has interest in the construction of barycentric coordinates on n-gons re-
surfaced [4, 5]. In this paper, we present a few recently proposed polygonal interpolants
[4, 5], and also describe the construction of a polygonal finite element method that is
based on natural neighbor (Laplace) shape functions [6]. The Laplace shape functions
on polygonal elements are adapted to develop an h-adaptive finite element method on
quadtree meshes. Since the determination of a linearly complete polygonal interpolant
leads to an under-determined linear system for the shape functions, there exists infinite
such interpolants. In [9], the least-biased interpolant or equivalently the one that maxi-
mizes the Shannon entropy [7] is derived. An extensive analysis and detailed numerical
studies of the above developments appear in [8, 9, 10].

2 POLYGONAL INTERPOLANTS

An interpolation scheme for a scalar-valued function u(x) : 2 — R is:
u"(x) =) di(x)us, (1)
i=1

where u; (i = 1,2, ..., n) are the unknowns at the n neighbors of point p, and ¢;(x)
is the shape function for node i. In a Galerkin approximation for second-order PDEs,
the following are the desirable properties of shape functions (barycentric coordinates on
polygons) and of the interpolant: non-negativity, interpolation, partition of unity and
linear completeness:

0<¢i(x) <1, ¢ix;) =3y, Z@(X) =1, Z¢i(£)xi =X (2)

In 1975, Wachspress [3] proposed rational (ratio of polynomial functions) basis func-
tions on polygonal elements, and renewed interest in these interpolants is a recent phe-
nomena. Dasgupta [11, 12] used symbolic computations to compute the Wachspress basis
function, whereas in [4], a simplified expression for the same is obtained:

w w; (X A(pi—1, pi, Di cot 7; + cot d;
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where the last expression is due to Meyer and co-workers, A(a,b,c) is the signed area
of triangle [a, b, ¢|, and ; and §; are shown in Fig. la. Floater [5] proposed mean value
coordinates (barycentric coordinates for n-gons):

50 = o ) = 0 (a“uf)_?ﬁm — (4)
;’U)j(x) i

where the angle «; is shown in Fig. 1b.

Figure 1: Barycentric coordinates. (a) Wachspress’s basis function [4]; (b) Mean value coordinates [5].

A new polygonal interpolant based on the concept of natural neighbors [13] was pro-
posed in [8]. Given a set of nodes in the plane, the Laplace shape function at a point
p within the convex hull is determined using the Voronoi diagram of the nodal set and
p. The natural neighbors of p are defined through the Delaunay circumcircles; if p lies
within the circumcircle of a Delaunay triangle ¢, the nodes that define ¢ are neighbors of
p. Formally, we define the Laplace shape function as [6]:

a;(x)

fo) = 2 = 5 (5)

n
a;(x)
7j=1

where s;(x) is the length of the Voronoi edge and h;(x) = ||x — x;|| (Fig. 2). The Laplace
shape function satisfies all the properties indicated in Eq. (2) [6].
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Figure 2: Laplace shape function.
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Figure 3: Canonical elements.

In a simplex-partition of a regular polygon, all triangles have a common center and the
nodes all lie on the same circumcircle. In Fig. 3, the canonical elements for a triangle,
square, pentagon and hexagon are shown. In each case, the nodes lie on the same cir-
cumcircle, and hence the nodes at the vertices of a polygon are the natural neighbors for
any point in Q. Since ¢! = ¢L(€) is piece-wise linear on the boundary 99, we use the
isoparametric mapping given in Eq. (2). Since the mapping is affine, the shape functions
remain linear on the boundary of a distorted but convex polygon.

In [8], a polygonal finite element method using the Laplace shape function is presented.
In the implementation, numerical integration is performed by sub-dividing the canonical
element into n triangles and then numerical quadrature is performed on each triangle to
assemble the stiffness matrix. We consider the patch test for the Laplace equation in
Q = (0,1)? with u(x) = x1 + x5 imposed on 9. In the analyses, four different meshes are
considered (Fig. 4). The relative errors in the L? and energy norms are: O(107¢)-0(107°)
and O(107%)-0(1078) with 25- and 13-point quadrature schemes, respectively.
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Figure 4: Meshes used in the patch test [8].
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Figure 5: Quadtree data structure. (a) Level 1; and (b) Level 2.

3 QUADTREE DATA STRUCTURE

Quadtree is a hierarchical data structure [14], which is widely used in geometric model-
ing and computer graphics. In any spatial data structure, the domain is enclosed by unit
squares (root) that are sub-divided into four equal elements (cells) which are the children
of the root. This process can be repeated several times on each of the children until a
stopping criteria is met. Two cells are adjacent if they have a common edge. Each child
of the cell represents an element: {NW, NE, SW, SE} (Fig. 5). A cell is called a leaf if it does
not have any children. The level of a cell is the number of refinements needed to obtain
that cell; the root is at level zero.

The classical approach of using quadtree with finite elements consist of two steps:
domain discretization into quadtree elements, and then sub-division of the leaf cells into
finite elements [15]. The second step is required because after each refinement hanging
nodes are generated in the adjacent elements of different level. Recently, conforming
approximations on quadtree meshes have been developed using hierarchical enrichment
[16] as well as B-splines [17]. To construct the shape functions in a quadtree element A



N. Sukumar and A. Tabarraei

QL
08
0.6
0.4
0.2

Figure 6: Shape function ¢!,.

(Fig. 5a), we use the affine map from the hexagon in Fig. 3 to A. The shape function
@', is continuous, and linear behavior along 1-a and a2 is realized (Fig. 6). Note that
this behavior on the boundary is distinct from higher-order FEM. In this study we use
the [m:1] rule: each edge can contain any number of edge nodes. Typically, in numerical
computations on quadtree decompositions, the [2:1] rule (Fig. 5) is used; here, no such
restrictions are imposed. For each element, we store its connectivity, refinement level, a
pointer to its father, and a pointer to its children. Mesh refinement strategy is based on
a relative energy error norm criterion.

For the adaptive simulations, we consider the model problem: V?u = f in Q = (0, 1)?
with v = 0 on 0f2. The source term f is chosen such that the exact solution is:
w(x) = 21°25°(1 — 21)(1 — x5). In Fig. 7, the initial mesh and its refinements are shown.
The mesh at level 5 captures the exact solution which is depicted in Fig. 7g.

4 CONCLUDING REMARKS

In this paper, we first reviewed some recent advances in the construction of barycentric
coordinates on irregular polygons and then presented the construction of a new polygonal
interpolant that was based on the concept of natural neighbors. The Laplace shape
functions [6] were defined on a canonical (reference) element and an affine map was used
to obtain the shape functions and their gradients on irregular polygons. The polygonal
finite element method [8] can be viewed as a generalization of finite elements to convex
polygons of arbitrary order. As an application of the polygonal interpolant, we developed
a conforming h-adaptive finite element method on quadtree meshes [10].
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Figure 7: Mesh refinements for the Poisson problem.
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