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Motivation

Inputs 
(Parameters)

Simulator
(Function)

Output
(Response)

y),,,( 21 dxxx K≡x RR →du :

• Polynomial interpolants 
• Splines
• Kriging 
• Radial basis functionsii
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Motivation: Applications

• Geometric Modeling, Computer Graphics,
and Visualization

• Finite Element/Meshfree Galerkin Methods

• Numerical Estimation and Prediction

• Design and Analysis of Computer 
Experiments



Motivation: Data Approximation
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Objectives

• Merits of constructing data approximants via 
a constrained optimization problem

• Introduce the Maximum Entropy Principle, and 
to present its derivation and implementation for 
one-dimensional and polygonal approximation

• The promise and potential of MAXENT to solve 
problems with epistemic (ignorance) uncertainty



Meshfree Approximations

• DEM (Nayroles et al, 1992)
• EFG (Belytschko et al, 1994)
• RKPM (Liu et al, 1994)
• PUM (Babuska and Melenk, 1996)
• Hp-Clouds (Duarte and Oden, 1996)
• MLPG (Atluri et al, 1997)
• BNM (Mukherjee et al, 1997)
• Finite Spheres (De and Bathe, 2000)

• NEM (Braun and Sambridge, 1996)
• NEM [Laplace] (Sukumar et al, 2000)



Construction of Basis Functions 
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• Finite Elements
• MLS/RBFs
• Natural Neighbors
• MAXENT

metric)( 2L

ISSUES

• Defining a good neighborhood: pattern 
recognition, clustering, learning theory

• EBCs: Interpolants are desirable
• Numerical integration (Galerkin method)



Voronoi Neighbors



Delaunay Circumcircle and Natural Neighbors

Convex hull

p lies outside the circumcircles in green



Sibson Interpolant
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Laplace Interpolant
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(Christ et al, 1982; Belikov et al, 1997; 
Hiyoshi and Sugihara, 1999)



Properties
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• Non-negative and PU: 

• Interpolate data: 

• Linear completeness/precision: 

• Smoothness: 

• Linear essential boundary conditions can be exactly
imposed
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Surface Interpolation (Sibson)

Courtesy of Sung
Park, CS@UCD

(zoom)
Bathymetry and topography data (~10,000 points) near  
NW Australia (Courtesy of Malcolm Sambridge)



Volume Reconstruction (Sibson): Human Head

(CT scan courtesy of
NC Memorial Hospital)

Courtesy of Sung 
Park, CS@UCD

5105×4103256



• Wachspress basis functions (Wachspress, 1975; 
Warren, ACM, 1996; Meyer et al, JGT, 2002; 
Dasgupta, JAE, 2003; Malsch, Ph.D. thesis, 2003) 

• Mean value coordinates 
(Floater, CAGD, 2003)

• Laplace shape functions

x

Construction of Polygonal Interpolants

x

(Sukumar and Tabarraei, IJNME, 2004)



Construction of Polygonal Interpolants (Cont’d)

• Maximum entropy (MAXENT) shape functions
(Sukumar, IJNME, 2004)

Imposing linear reproducibility leads to an under-
determined system of linear equations for 

Use Shannon entropy (Shannon, 1948) and max
entropy principle (Jaynes, 1957) to find

Constrained optimization problem is solved     
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Wachspress Basis Functions

(Meyer et al., JGT, 2002)

2

1

cotcot)(,
)(

)()(
i

ii
in

j
j

i
i w

w

w

xx
x

x

xx
−

+
==

∑
=

δγφ



Mean Value Coordinates

(Floater, CAGD, 2003)
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Laplace Shape Functions

Canonical Elements



Polygon Interpolant Using Affine Mapping

Laplace Shape Function



Polygonal (Laplace) Basis Function
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Principle of Maximum Uncertainty/Entropy
(Shannon,1948; Jaynes,1957)

• Provides the least-biased solution when incomplete/
insufficient information is available

• For a discrete probability distribution
with , let the average (expected) value of
property      be known:

• Maximizing the information-entropy
subject to the constraints leads to the most 
probable solution (Gibbs-Boltzmann distribution in
statistical mechanics)
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Principle of Minimum Relative Entropy 
(Kullback, 1959)

• Given a prior distribution    , the Kullback-Leibler
distance (mutual information) between     and      is

• Minimizing the relative-entropy with a uniform prior,
, is equivalent to maximizing Shannon entropy

• Other measures: Renyi and Tsallis entropies
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MAXENT at Work!
• Coin toss:                 and MAXENT gives

Principle of indifference or insufficient reason

• Wallis provided a combinatorial justification for the 
choice of the specific form of H(p)

• Suppose a die has been tossed N times and we are 
told that the average number of spots is 4.5 and not
3.5 (honest die).  Then, MAXENT gives 
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MAXENT Applications

• Statistical mechanics and physics

• Communication and natural language modeling

• Image reconstruction and biology (protein folding)

• Economics and urban planning

• Materials science (crystallography/microstructure)

• . . . and many more where uncertainty resides



MAXENT in Computational Mechanics

• Elegant and least-biased solution for scattered
data approximation by associating shape functions
with discrete probability measures

• Broader implications in computational mechanics:
o Numerical estimation/prediction
o Tailored approximants for meshfree methods
o Microstructural design and optimization
o Ill-posed (non-unique) inverse problems
o Multiscale modeling



Problem Statement: MAXENT Shape Functions
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Minimum Norm Solution
General Solution of              :pPφ =

P)cP(IpPφ ++ −+=

and if c = 0 we obtain the min-norm solution:

≡= ++ PpPφ , Generalized Inverse
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Since            is possible,          is not suitable
as an uncertainty measure
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MLS and Weighted Minimum-Norm Solution
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MAXENT Solution Using Lagrange Multipliers
• First variation of augmented Lagrangian is zero

and since the variations       are arbitrary
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MAXENT Solution (Cont’d)

• Letting                       (Z is the partition function), we get 

• Since               ,     
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MAXENT Solution (Cont’d)

• If only one constraint exists (                  ), then

(nearest-neighbor interpolant)

• In general,     and      satisfy two non-linear equations:
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Numerical Algorithm for MAXENT Shape Functions

• Let                                     . Then,  

• The vector field  f is the gradient of a scalar potential:            
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Numerical Algorithm (Cont’d)

• Recast the MAXENT formulation as a convex minimizer
(dual) problem (Agmon et al., JCP, 1979):

• Initial guess                                     Update        

• is determined by the condition that                        is 
minimized along the search direction

• Convergence criterion: 
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MAXENT Shape Functions in 1D

1(0,0) 2(1/2,0) 3(1,0)
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MAXENT Shape Functions in 1D (Cont’d)
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MAXENT Shape Functions in 1D (Cont’d)

n = 6n = 11 



Square: MAXENT Shape Functions
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Square (Cont’d)
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which are the same as bilinear finite element shape
functions



Square (Cont’d)
MAXENT Bilinear FE Interpolation≡

Entropy = log Z
~

Shape Function



Square: Convergence

F = log Z @ x = (0.56,0.42)
~



Square: Convergence (Cont’d)

F = log Z @ x = (0.9,0.12)
~

F = log Z @ x = (0.99,0.12)
~

Use of nonlinear CG leads to faster convergence



Hexagon: Shape Functions

MAXENT Laplace

Mean-Value
Coordinates



Hexagon: Normalized Entropy 

Mean-value coordinates Laplace



Bubble (Shape) Function 

Contour plot 3D



Mid-Side Node: Shape Function 

Shape function of node a
Five-node element



Mid-Side Node: Maximum Entropy Distribution



Shape Function (MAXENT) Derivatives

where 
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Galerkin Method (Patch Test) 
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Shape Function Visualization: JAVA Applet

(Developed by Roy
Wright, UCD)



JAVA Applet (Cont’d)



JAVA Applet (Cont’d)



JAVA Applet (Cont’d)

3D plot



JAVA Applet (Cont’d)

Mouse-click to insert
Right-click to delete



JAVA Applet (Cont’d)

MVC (Non-Convex)
Enabled



Visualization of Shape Functions

Contour plot 



Side Node

Contour
plot



Side Node (Cont’d)

3D Plot



Interior Node



Interior Node (Cont’d)

3D Plot



Related Applications: A. Supervised Learning
(Gupta, Ph.D. thesis, Stanford, 2003)

Objective: Estimation of unknown quantities based
on observed samples (numerical estimation), for e.g.,
pollutants in a city, spam e-mail, speech recognition

Observation
/Classification RV

R∈Y
dX R∈

Feature Random 
Vector

relationship

For        , the curse of dimensionality!↑d

Given         and iid data )},(,),,(),,{( 222211, YXYXYXP YX K

ESTIMATE    XYP |



A. Supervised Learning (LIME Algorithm)
Distortion function is  the mean 
squared error
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B. Local MAXENT Meshfree Method
(Arroyo and Ortiz, 2005)

[ ])()U(Minimize φφ H−β

2

1
||||)U( i

n

i
i xxφ −=∑

=

φ

i

n

i
i φφ log)H(

1
∑
=

−=φ

(second-order moment)

(Shannon entropy)

subject to the three linear reproducing conditions

Presentation by Marino Arroyo forthcoming on 
Wednesday, July 27, 2005 (USNCCM8)



C. Nodal Refinement 

…………
``sprinkle
nodes’’

node

integration
cell

crack



Linked the use of the maximum entropy principle to 
data approximation; use of extremum principles to 
compute shape functions have well-established roots
(Kriging, Delaunay, thin-plate splines, MLS, Laplace)

Numerical formulation to solve the MAXENT problem 
in 1D and 2D was described, which readily extends to

. A JAVA applet to plot meshfree shape
functions has been developed

The use of information-theoretic principles in materials 
and mechanics computations holds promise

Concluding Remarks
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