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Abstract

In this paper, we present the development of quadratic serendipity shape

functions on planar convex and nonconvex polygons. Drawing on the work

of Bompadre et al. [1] and Hormann and Sukumar [2], we adopt a relative

entropy measure for signed (positive or negative) shape functions, with nodal

prior weight functions that have the appropriate zero-set on the boundary of

the polygon. We maximize the objective functional subject to the constraints

for quadratic completeness proposed by Rand et al. [3]. Along an edge of a

polygon, the approximation is identical to univariate Bernstein polynomials:

the choice of the nodal prior weight function ensures that the shape functions

satisfy a weak Kronecker-delta property on each edge. The shape functions

are well-defined for arbitrary planar polygons without self-intersections. On

using a modified numerical integration scheme, we show that the quadratic

patch test is passed on polygonal meshes with convex and nonconvex ele-

ments. Numerical tests for the Poisson equation on self-similar trapezoidal

meshes and quasiuniform polygonal meshes are presented, which reveal the

sound accuracy of the method, and optimal rates of convergence in the L2

norm and the H1 seminorm are established.
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serendipity elements, quadratic precision, maximal Poisson-sampling

1. Introduction

Interpolating given discrete data with continuous functions in one or more

variables is a fundamental problem in diverse fields of science and engineering.

Barycentric coordinates, which were introduced by Möbius in 1827, still pro-

vide perhaps the most convenient way to linearly interpolate data prescribed

at the vertices of a d-dimensional simplex in IRd. In recent years, with an

eye on computer graphics and finite element applications, barycentric coor-

dinates on simplices have been extended to polygons and polyhedra. These

coordinates (synonymous with shape functions in finite element methods) for

polygons and polyhedra are referred to as generalized barycentric coordinates.

On convex polygons, generalized barycentric coordinates are non-negative,

they form a partition of unity, and have linear precision. Consider a planar

convex polygon with n vertices (n-gon). Given the n vertices of a poly-

gon, generalized barycentric coordinates are readily constructed using many

different approaches, such as Wachspress coordinates [4], mean value coordi-

nates [5], harmonic coordinates [6], and maximum-entropy (max-ent) coordi-

nates [7] to name a few. On convex and nonconvex polygons, harmonic and

maximum-entropy coordinates are linearly precise and strictly non-negative

(convex approximation). Along with the advances of generalized barycentric

coordinates in computer graphics, there has been a concomitant development

of barycentric finite element and boundary element methods on polygons and

polyhedra [7–18], with contributions in interpolation error estimates [19, 20],

and applications in fracture modeling [21–23], topology optimization [24–26],

and mesh generation [27–32].

The extension to higher-order approximations on polygonal elements has

received limited attention. Milbradt and Pick [11] present a construction for
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transition elements on p-adaptive polygonal meshes. Recently, using gener-

alized barycentric coordinates as a starting point, Rand et al. [3] developed

quadratic serendipity finite elements on convex polygons. In their work,

nodal shape functions are associated with vertices and with the mid-point of

each boundary edge; in the spirit of 8-node (quadratic) serendipity isopara-

metric finite elements, there are no shape functions associated with interior

nodes. In Reference [3], the criteria and constraints (reproducing conditions)

that must be met by such shape functions are presented, and it is shown that

the approximation delivers optimal rates of convergence in Sobolev norms.

Within the family of entropy-based schemes, the construction of convex ap-

proximations with quadratic completeness has been pursued [33–35]; to re-

tain the convexity property of the approximation, the quadratic reproducing

conditions have to be modified, which complicates the formulation. Bom-

padre et al. [1] relaxed the convexity constraint and used a modified entropy

measure to construct higher-order local max-ent approximation schemes.

In this paper, we adopt the constraints given in Rand et al. [3] and re-

cast the objective functional introduced by Bompadre et al. [1] within the

framework of relative entropy with prior weight functions [2, 36]. In par-

ticular, we use the nodal prior weight functions introduced in Hormann and

Sukumar [2] for arbitrary planar polygons without self-intersections. For

any point on a boundary edge of a polygonal element, only three nodal prior

weight functions (nodes that lie on the edge) are non-zero. This ensures that

the facet-reducing property [37] is also preserved for signed shape functions,

and C0-conforming approximations are realized on polygonal meshes. Our

formulation provides serendipity shape functions with quadratic complete-

ness on convex and nonconvex polygonal elements. The objective functional

and the linear constraints are introduced in Section 2.1, and the max-ent

variational formulation is presented in Section 2.2. The numerical algorithm
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is presented in Section 2.3, and the expressions for the derivatives of the

max-ent shape functions are derived in Section 2.4. Mesh generation using

maximal-Poisson sampling is discussed in Section 3, and in Section 4 we tai-

lor the cell-based meshfree numerical integration scheme proposed by Duan

et al. [38] for quadratic polygonal elements. Numerical tests for Poisson

problems are presented in Section 5. We show that the quadratic patch test

is passed, and the quadratic polygonal finite element delivers optimal rates

of convergence in Sobolev norms on self-similar trapezoidal meshes; on such

meshes, quadratic serendipity isoparametric finite elements yield suboptimal

convergence rates [39–41]. We close with some final remarks in Section 6.

2. Quadratic Maximum-Entropy Element

Consider a planar polygonal element Ωe ⊂ IR2 with n vertices (Fig. 1a).

We do not allow polygons that self-intersect, but do permit weakly simple

polygons in which three or more consecutive vertices are collinear. Let he

denote the diameter of the polygon. To obtain shape functions that can

reproduce bivariate quadratic functions, we assign an additional node to the

mid-point of each edge. The vertex nodes are contained in the index set

V = {1, . . . , n}, whereas the mid-edge nodes are contained in the index set

E = {n+1, . . . , 2n}. We denote any point in Ω̄e by x ≡ (x, y) and the nodal

coordinates by xa ≡ (xa, ya). The coordinates of the vertex nodes are xa

(a = 1, 2, . . . , n), which are ordered in counter-clockwise orientation. The

coordinates of the nodes in E are: xn+a = (xa + xb)/2, where a = 1, 2, . . . , n

and b = mod(a, n)+1 with mod denoting the modulo operation. The a-th edge

Ea := (a, a+1) has nodal connectivity (a, a+n, a+1) (Fig. 1b). Cyclic order

is assumed for the edge-connectivity, i.e., En := (n, 1). Given a real-valued

function u(x) : Ωe → IR, the numerical approximation for u(x) within the
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Fig. 1: Planar polygon Ωe. (a) Node numbering for vertex and mid-edge

nodes; and (b) Nodal connectivity for edge a and point x ∈ Ωe are depicted.

polygonal element is written as:

uh
e (x) =

2n
∑

a=1

φa(x)ua, (1)

where φa(x) is the shape function associated with node a, and ua are nodal

coefficients. We first discuss the objective functional and the constraint equa-

tions, and then present the variational formulation and its numerical imple-

mentation to determine φa(x) so that (1) has quadratic completeness.

2.1. Objective functional and linear constraints

In the maximum-entropy approach [42, 43], the unknown discrete proba-

bility distribution p is determined by maximizing the Shannon entropy [44]

or the negative of the relative entropy [45, 46] subject to constraints on p.

The maximum-entropy principle was used to construct strictly non-negative

linearly complete basis functions [7, 36, 37].

For positive-negative probability distributions, Skilling [47] introduced an

entropy measure based on relative entropy, which was adopted to construct

signed meshfree basis functions [36]. Recently, Bompadre et al. [1] proposed a
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modified entropy functional for constructing higher-order complete meshfree

basis functions. Herein, to meet our objectives, we recast their formulation

within the more general setting of relative entropy.

Let {p+
a (x)}2n

a=1 : Ωe → IR2n
+ and {p−a (x)}2n

a=1 : Ωe → IR2n
+ be non-negative

nodal functions, where IR2n
+ denotes the non-negative orthant (box in IR2n).

We define φa(x) := p+
a (x) − p−a (x) [1] to be the shape function associated

with node a, and set wa(x) as the nodal prior weight function for both p+
a (x)

and p−a (x). Then, for a fixed x ∈ Ωe, we can write the negative of the relative

(Shannon-Jaynes) entropy for the two distributions as [45]:

H(p+,p−) = −
2n
∑

a=1

p+
a (x) ln

(

p+
a (x)

wa(x)

)

−
2n
∑

a=1

p−a (x) ln

(

p−a (x)

wa(x)

)

. (2)

If a Gaussian function is chosen as the prior, i.e., wa(x) = exp(−β||xa−x||2),
then the above objective functional reduces to that proposed in Reference [1].

Now, we need to define the appropriate constraints, which will ensure

quadratic completeness and C0-conformity on each edge of the polygonal

element. To this end, we follow the recent work of Rand et al. [3], where

quadratic serendipity finite elements are developed. Let {λa(x)}n
a=1 be gener-

alized barycentric coordinates for an n-gon. To construct a space of functions

that can reproduce bivariate quadratic functions, Rand et al. [3] considered

the constraints that stem from the pairwise products of generalized barycen-

tric coordinates:

n
∑

a=1

n
∑

ã=1

µaã = 1, (3a)

n
∑

a=1

n
∑

ã=1

µaã

(

xa + xã

2

)

= x, (3b)

n
∑

a=1

n
∑

ã=1

µaã xa ⊗ xã = x ⊗ x, (3c)

where {µaã} := {λaλã}n
a,ã=1. The set {µaã} does not constitute a bases for

the space of bivariate quadratic functions since it contains linearly dependent
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functions. Note that all functions µaã associated with nodes that are located

in the interior of the polygon are zero on the boundary of the polygon. Moti-

vated by this observation and the serendipity construction for finite elements,

Rand et al. [3] rewrote (3) by retaining only functions associated with vertex

nodes and mid-edge nodes of the polygon, which is a total of 2n functions.

The constraint equations so developed have a feasible solution [3]. Due to

symmetry (µab = µba), the constraint equations in (3) can be simplified,

which we write in terms of the polygonal shape functions as:

2n
∑

a=1

φa(x) = 1 (4a)

2n
∑

a=1

φa(x)xa = x (4b)

n
∑

a=1

φa(x)xa ⊗ xa +
n
∑

a=1

φa+n(x)

(

xa ⊗ xb + xb ⊗ xa

2

)

= x ⊗ x, (4c)

where b = mod(a, n)+1. Note that the constraint equations in (4) are written

in a form that slightly differs from that used in Reference [3].

We now proceed to express the constraints in terms of the shifted nodal

coordinates, xa−x. On using the linear reproducing conditions, we can write

the equality:
∑

a φa(xa −x)⊗ (xa −x) =
∑

a φa[xa ⊗xa −x⊗x], and hence

the quadratic constraint in (4c) can be written as:

2n
∑

a=1

φa(x) (xa − x) ⊗ (xa − x) +
n
∑

a=1

φa+n(x)

(

xa ⊗ xb + xb ⊗ xa

2

)

−
n
∑

a=1

φa+n(x)xa+n ⊗ xa+n = 0.

Using xa+n = (xa +xb)/2, and after some algebraic simplifications, the above

equation reduces to:

2n
∑

a=1

φa(x) (xa − x) ⊗ (xa − x) −
n
∑

a=1

φa+n(x)

[

(xb − xa) ⊗ (xb − xa)

4

]

= 0,
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and therefore the constraints in (4) take the form:

2n
∑

a=1

φa(x) = 1 (5a)

2n
∑

a=1

φa(x) (xa − x) = 0 (5b)

2n
∑

a=1

φa(x) [(xa − x) ⊗ (xa − x) − da] = 0, (5c)

where

d1 = . . . = dn = 0, da+n =
(xb − xa) ⊗ (xb − xa)

4
(1 ≤ a ≤ n). (5d)

The nodal coefficients da in the above equation have an interpretation of

so-called nodal gaps [35], which are used to ensure feasibility of reproducing

x⊗x in second-order convex approximation schemes. To aid in the derivation

of the variational formulation, we define a nodal vector ca(x):

ca(x) :=



















1

xa − x

(xa − x) ⊗ (xa − x)



















(1 ≤ a ≤ n), (6a)

ca(x) :=



















1

xa − x

(xa − x) ⊗ (xa − x) − (xb − xa) ⊗ (xb − xa)

4



















(a > n), (6b)

where the last entry in ca is a symmetric 2×2 matrix and hence only the en-

tries in the upper triangle (Voigt notation) are stored. Now, the reproducing

conditions in (4) can be written in compact form as:

2n
∑

a=1

φa(x)ca(x) = q, (7)

where q = {1 0}T is a constant (6 × 1) vector.
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The final ingredient is the choice for wa(x), which we construct such that

when combined with the constraints in (7), it yields Bernstein polynomi-

als [48] as the unique solution for the shape functions along each boundary

edge. To this end, we select an edge weight function that vanishes along edge

a and is strictly positive elsewhere in the plane. Two choices for the edge

weight are [2]:

ρa(x) = ‖xa − x‖ + ‖xa+1 − x‖ − ‖xa+1 − xa‖ (8a)

ρa(x) = (xa − x) · (xa+1 − x) + ‖xa − x‖ ‖xa+1 − x‖, (8b)

where xn+1 := x1 and ρa(x) ≥ 0 with ρa(x) ≡ 0 if x lies on the edge a

(see Fig. 1). Now, we define the nodal prior weight functions as [2]:

wa(x) =
Πa(x)

2n
∑

b=1

Πb(x)

, Πa(x) =
1

ρa−1(x)ρa(x)
(a = 1, . . . , n),

Πa(x) =
1

ρa(x)
(a = n + 1, . . . , 2n),

(9)

where ρ0(x) := ρn(x) and from (9), we note that on the a-th edge, only the

priors for nodes a, a+1, and a+n have non-zero contributions. The edge

weight in (8a), which is based on the triangle inequality, is computationally

more efficient and has slower growth than the one in (8b). In the numerical

computations, the edge weight given in (8a) is used. In Fig. 2, two nodal

prior weight functions for a square are shown. The gradient of (8a) is:

∇ρa(x) = − xa − x

‖xa − x‖ − xa+1 − x

‖xa+1 − x‖ . (10)

2.2. Variational formulation

On using (2) and (7), the max-ent variational formulation is: for a given

x ∈ Ωe, find p+
a (x), p−a (x) ∈ IR+ (a = 1, . . . , 2n) as the solution of the
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Fig. 2: Nodal prior weight functions for a square. (a) w2(x); and (b) w5(x).

constrained (concave) optimization problem:

max
p+,p−∈IR2n

+

[

−
2n
∑

a=1

p+
a (x) ln

(

p+
a (x)

wa(x)

)

−
2n
∑

a=1

p−a (x) ln

(

p−a (x)

wa(x)

)

]

, (11a)

subject to the following linear constraints:

2n
∑

a=1

[p+
a (x) − p−a (x)]ca(x) = q. (11b)

Equation (11) admits a unique solution since the objective functional is

strictly concave in Ωe [49] and the linear constraints constitute a feasible

set [3]. After solving for p+(x) and p−(x), φa(x) = p+
a (x)− p−a (x) yields the

nodal shape functions.

The presentation of the variational formulation closely follows Bompadre

et al. [1]. Let λ ∈ IR
(p+1)(p+2)

2 (here p = 2) contain the six Lagrange multipliers

associated with the linear constraints in (11b). Then, the Lagrangian is:

L(p+,p−,λ) = −
2n
∑

a=1

[

p+
a (x) ln

(

p+
a (x)

wa(x)

)

+ p−a (x) ln

(

p−a (x)

wa(x)

)]

− λ ·
(

2n
∑

a=1

[p+
a (x) − p−a (x)]ca(x) − q

)

.

(12)
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The Karush-Kuhn-Tucker (KKT) first-order optimality conditions are:

−1 − ln p+
a (x) + ln wa(x) − λ · ca(x) = 0,

−1 − ln p−a (x) + ln wa(x) + λ · ca(x) = 0,

and on noting that p+
a , p−a : Ωe × IR6 → IR+, the above yields

p+
a (x,λ) = wa(x) exp

(

f+
a (x,λ)

)

, f+
a (x,λ) = −1 − λ · ca(x), (13a)

p−a (x,λ) = wa(x) exp
(

f−

a (x,λ)
)

, f−

a (x,λ) = −1 + λ · ca(x). (13b)

The Lagrangian dual function f : IR6 → IR is:

f(λ) = max
p+,p−∈IR2n

+

L(p+,p−,λ).

On substituting (12) and (13) in the above equation and simplifying, we

obtain

f(λ) := Z(x,λ) = λ0 +
2n
∑

a=1

wa(x)
[

exp
(

f+
a (x,λ)

)

+ exp
(

f−

a (x,λ)
)]

= λ0 +
2n
∑

a=1

[

p+
a (x,λ) + p−a (x,λ)

]

, (14)

where Z(x,λ) : Ωe × IR6 → IR is the partition function, and its explicit

dependence on x is indicated. Hence, the dual problem is:

λ
∗(x) = argmin

λ∈IR6

Z(x,λ), (15)

where λ
∗(x) is the converged solution for the Lagrange multiplier vector.

2.3. Numerical algorithm

The dual problem posed in (15) is an unconstrained convex optimization

problem, and is solved using Newton’s method. The main steps in Newton’s

method to compute the shape functions φa(x) for any x ∈ Ωe are as follows:
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1. Inputs: Vertices of polygon Ωe in counter-clockwise orientation, and a

point x ∈ Ωe. Rescale diameter of the polygon to O(1) for the com-

putations. Also functions to compute the nodal prior weight function

wa(x) and its gradient are available.

2. Set the nodal (vertex and mid-edge) coordinates xa (a = 1, . . . , 2n),

and use (6) to store ca.

3. Start with iteration counter k = 0, and the initial guess λ
0 = 0. Let

ǫ be the convergence tolerance, where ǫ in the range 10−5 to 10−15 is

suitable.

4. Compute gk = ∇λZk and Hk = ∇λ∇λZk, which are the gradient and

Hessian of the partition function Z(x,λ), respectively. The gradient

gk = −
∑2n

a=1
φk

aca+q, and the Hessian Hk =
∑2n

a=1

[

p+k
a + p−k

a

]

ca⊗ca.

5. Determine Newton search direction ∆λ
k = −

(

Hk
)−1

gk.

6. Update: λ
k+1 = λ

k + α∆λ
k, where α is the step size. If ‖gk‖ > 10−4,

then α is determined using a line search algorithm [50]; otherwise α is

set to unity.

7. Check convergence: if ‖gk+1‖ > ǫ, then increment the iteration counter

k and goto 3, else continue.

8. Set λ
∗ = λ

k+1 and compute p+∗
a (x) and p−∗

a (x) using (13) and then the

shape function φ∗
a(x) = p+∗

a (x) − p−∗
a (x) (a = 1, . . . , 2n).

The unconstrained convex optimization problem is efficiently solved using

Newton’s method with line search; only 3 to 7 iterations are needed to obtain

an accuracy of 10−15 on planar polygons. For a Gaussian nodal prior weight

function, the implicit function theorem is invoked to prove the smoothness

of non-negative [37] and signed shape functions [1]. Following the analysis

of Sukumar and Wets [49], the continuity of signed shape functions for a

Ck(Ωe) (k ≥ 0) nodal prior weight function is readily established.
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2.4. Computation of the gradient of the shape functions

As indicated in Section 2.3, once the Lagrange multiplier vector is deter-

mined, the shape function φ∗
a(x) is:

φ∗

a(x) = p+∗

a (x) − p−∗

a (x)

= wa(x) exp
(

f+∗

a (x,λ∗)
)

− wa(x) exp
(

f−∗

a (x,λ∗)
)

,
(16)

where (13) is used. Therefore, the gradient of φ∗
a(x) is:

∇φ∗

a(x) =
{

exp
(

f+∗

a (x,λ∗)
)

− exp
(

f−∗

a (x,λ∗)
)}

∇wa(x)

+ wa(x)
{

D
[

exp
(

f+∗

a (x,λ∗)
)]

− D
[

exp
(

f−∗

a (x,λ∗)
)]}

,
(17)

where D[·] is the total derivative of its argument, ∇wa(x) is known and

D
[

exp
(

f±∗
a (x,λ∗)

)]

needs to be determined. We can write

D
[

exp
(

f±∗

a (x,λ∗)
)]

= exp
(

f±∗

a (x,λ∗)
)

∇
(

f±∗

a (x,λ∗)
)

= exp
(

f±∗

a (x,λ∗)
)

[∓ca(x) · ∇λ
∗ ∓ λ

∗ · ∇ca(x)] ,

where (13) is used to arrive at the second equality. Therefore,

wa(x)
{

D
[

exp
(

f+∗

a (x,λ∗)
)]

− D
[

exp
(

f−∗

a (x,λ∗)
)]}

= −
[

p+∗

a (x,λ∗) + p−∗

a (x,λ∗)
]

[ca(x) · ∇λ
∗ + λ

∗ · ∇ca(x)] .
(18)

In the above equation, the matrix-representation for ∇ca(x) is obtained

from (6):

Da(x) := ∇ca(x) =





























0 0

−1 0

0 −1

−2(xa − x) 0

0 −2(ya − y)

−(ya − y) −(xa − x)





























, (19)
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and hence we need to determine ∇λ
∗ in (18) to complete the derivation. To

this end, using (14) and letting r := ∇λZ(x,λ), we have

r∗ = q −
2n
∑

a=1

[

wa(x) exp
(

f+∗

a (x,λ∗)
)

− wa(x) exp
(

f−∗

a (x,λ∗)
)]

ca(x)

= q −
2n
∑

a=1

[

p+∗

a (x) − p−∗

a (x)
]

ca(x) = 0, (20)

since the constraint (7) is satisfied at convergence. Therefore,

Dr∗ = ∇xr
∗ + (∇λr)

∗ · ∇λ
∗ = 0. (21)

Let H∗ = (∇λr)
∗ denote the Hessian of the partition function. Applying the

operator ∇λ to (20) leads to

H∗ =
2n
∑

a=1

[

p+∗

a (x,λ∗) + p−∗

a (x,λ∗)
]

ca ⊗ ca. (22)

Note that for any non-zero u ∈ IR6, it follows from (22) that u · H · u ≥ 0

(positive semi-definite), since p+
a (x,λ) and p−a (x,λ) are both non-negative.

Furthermore, in Ωe (open set), p+
a + p−a is positive from (13), and strict con-

vexity of the partition function is realized [1]. However, unlike Reference [1]

where strict convexity is also met on ∂Ωe with a Gaussian prior, here it is not

so since if x lies on a boundary edge, only three nodal prior weight functions

wa(x) are non-zero, and H is singular.

Now, on applying ∇x to (20), we obtain

∇xr
∗ = −

2n
∑

a=1

[

exp
(

f+∗

a (x,λ∗)
)

− exp
(

f−∗

a (x,λ∗)
)]

ca(x) ⊗∇wa(x)

+
2n
∑

a=1

ca(x) ⊗ wa(x)
[

exp
(

f+∗

a (x,λ∗)
)

+ exp
(

f−∗

a (x,λ∗)
)]

λ
∗ · Da(x)

−
2n
∑

a=1

wa(x)
[

exp
(

f+∗

a (x,λ∗)
)

− exp
(

f−∗

a (x,λ∗)
)]

Da(x),
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and denoting A∗ := ∇xr
∗, we have

A∗ := ∇xr
∗ = −

2n
∑

a=1

[

exp
(

f+∗

a (x,λ∗)
)

− exp
(

f−∗

a (x,λ∗)
)]

ca(x) ⊗∇wa(x)

+
2n
∑

a=1

ca(x)
[

p+∗

a (x,λ∗) + p−∗

a (x,λ∗)
]

⊗
(

λ
∗ · Da(x)

)

−
2n
∑

a=1

φ∗

a(x,λ∗)Da(x). (23)

On substituting (22) and (23) in (21), we obtain

∇λ
∗ = −(H∗)−1 · A∗. (24)

Now, using (18), (19), and (24), we can write (17) as

∇φ∗

a(x) =
[

exp
(

f+∗

a (x,λ∗)
)

− exp
(

f−∗

a (x,λ∗)
)]

∇wa(x)+

[

p+∗

a (x,λ∗) + p−∗

a (x,λ∗)
] [

ca(x) · (H∗)−1 · A∗ − λ
∗ · Da(x)

]

(25)

which is the final result for the gradient of φ∗
a(x). It is readily verified that

this expression for ∇φ∗
a(x) satisfies:

∑2n

a=1
[ca(x) ⊗∇φ∗

a(x) + φ∗
a(x)Da] = 0,

which is the gradient of (7).

3. Voronoi Mesh Generation Based on Maximal Poisson-Sampling

Compared to mesh generation for triangular meshes, polygonal mesh gen-

eration is still in its infancy. Among the Voronoi mesh generation techniques,

the contributions of Du and Gunzburger [51], Yip et al. [27], Sieger et al. [28],

Talischi et al. [29], and the recent work of Ebeida et al. [30–32] are significant.

To generate Voronoi meshes with uniform random sampling, it is desirable

to insert points without bias within a domain. This leads to a randomly

closed-packed structure (RCP), and is referred to as maximal Poisson-disk

sampling (MPS) or dart-throwing in computer graphics. Poisson-disk sam-

pling is a process that distributes uniform random points in a domain in
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IRd with no two points being closer than a distance ρ. Recently, Ebeida

and co-workers [32] proposed an efficient algorithm, which is provably max-

imal, bias-free unlike centroidal Voronoi tessellation [51, 52]), has a finite

stopping-time, and is more efficient than previous algorithms. An applica-

tion to uniform Voronoi mesh-generation is also described [30].

We have developed a Voronoi mesh generator based on the MPS algorithm

presented in Reference [31]. The built-in Matlab function voronoin and

Matlab functions provided in PolyTop [29] for building the mesh-connectivity

are used to create the polygonal meshes. The essentials of the algorithm are

now described for the unit square. Given a ρ, the unit square is divided into

square (base) cells of side length s0 = ρ/
√

2 (s0 = ρ/
√

d in IRd), so that at

most only one point is assigned to each base cell. All these base cells are

at level 0 and are either empty or have one point during any iteration. Let

|C| denote the number of cells that are active (empty). At the beginning of

each iteration, we throw 0.5|C| number of darts uniformly on the grid, which

results in some hits. Those base cells that are hit are assigned the point,

and they are now deemed inactive. For the next iteration, we refine the

background grid by subdividing all uncovered (active) cells into four subcells

(we discard subcells that are completely covered by the disks). Now, we

are at level 1, and repeat the foregoing process. By retaining only squares

of the same size at any iteration, it allows the generation of an unbiased

candidate point in constant time and leads to efficient memory usage and

run-time. A sample Voronoi mesh is illustrated in Fig. 3. For the point-

distribution (Voronoi generators) in a unit square, the essential ingredients

in the algorithm (active cells, inactive cells, and circles) at every iteration

are shown in Fig. 4.

16



Fig. 3: Voronoi mesh using maximal Poisson-sampling algorithm. Nodes are

indicated by filled circles and the seed points are shown as open circles.

4. Numerical integration of the weak form integrals

As in meshfree methods [53], since polygonal shape functions are non-

polynomial, accurate and efficient numerical integration is also a pertinent is-

sue in polygonal finite element methods. Use of standard polynomial-precise

quadrature on triangles [54] proves to be insufficient to pass the patch test to

machine precision [7]. To satisfy the patch test in nodally-integrated meshfree

methods, a smoothed or corrected strain operator [55, 56] has been proposed.

Even though the patch test is met, nodal integration requires additional sta-

bilization to prevent the presence of spurious modes [57]. The corrected

strain operator is also used in the smoothed finite element method on polyg-

onal meshes [58, 59]. Most of the aforementioned studies have focused on

a modified strain operator for linearly complete meshfree approximations.

Recently, Duan et al. [38] proposed a cell-based integration scheme that is

suitable for quadratically complete meshfree methods; herein, we tailor this

17



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
End of iteration 0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Start of iteration 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
End of iteration 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Start of iteration 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
End of iteration 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Start of iteration 3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
End of iteration 3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Start of iteration 4

Fig. 4: Maximal Poisson-sampling algorithm [31]. Light cells are active and

dark (grey) cells are inactive. At the beginning of iteration 4, the sampling

is maximal since there aren’t any active cells left. At any iteration, all active

cells are always at the same level. This simplifies the data structures, reduces

the memory requirements, and eases the numerical implementation.
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integration scheme for the quadratic serendipity finite element method to

ensure that the patch test is satisfied.

Consider the strong form for the Poisson equation:

−∇2u(x) = f(x) in Ω = (0, 1)2, (26a)

u(x) = g(x) on ∂Ω, (26b)

whose weak form is:

a(u,w) = ℓ(w) ∀w ∈ H1
0 , a(u,w) =

∫

Ω

∇u · ∇wdΩ, ℓ(w) =

∫

Ω

fwdΩ. (27)

For a Galerkin method with quadratic max-ent shape functions, we have the

following linear system:

Kd = f , Kab =

∫

Ω

∇φa · ∇φb dΩ, fa =

∫

Ω

fφa dΩ, (28)

where K and f are formed via element-level assembly procedures.

In deriving the weak form in (27), we multiply (26a) by test functions

φa and integrate over the domain. On invoking the divergence theorem, we

obtain

−
∫

Ω

φau,ii dΩ = −
∫

∂Ω

φau,ini dS +

∫

Ω

φa,iu,i dΩ +

∫

Ω

φaf dΩ,

or,
∫

Ω

φa,iu,i dΩ =

∫

∂Ω

φau,ini dS −
∫

Ω

φau,ii dΩ −
∫

Ω

φaf dΩ.

For the quadratic patch test, f = 0, and u,1 and u,2 are affine functions.

Hence, the above equation becomes

∫

Ω

φa,i{1 x1 x2}T dΩ =

∫

∂Ω

φa{1 x1 x2}T ni dS−
∫

Ω

φa{0 δ1i δ2i}T dΩ (i = 1, 2),

and therefore we can write the conditions (integration constraints) that must
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be met by the shape function derivatives as:

∫

Ω

φa,1 dΩ =

∫

∂Ω

φan1 dS, (29a)
∫

Ω

φa,1x1 dΩ =

∫

∂Ω

φax1n1 dS −
∫

Ω

φa dΩ, (29b)
∫

Ω

φa,1x2 dΩ =

∫

∂Ω

φax2n1 dS, (29c)

which applies to φa,1, and similarly,

∫

Ω

φa,2 dΩ =

∫

∂Ω

φan2 dS, (29d)
∫

Ω

φa,2x1 dΩ =

∫

∂Ω

φax1n2 dS, (29e)
∫

Ω

φa,2x2 dΩ =

∫

∂Ω

φax2n2 dS −
∫

Ω

φa dΩ (29f)

must be met by φa,2.

To obtain corrected shape function derivatives that satisfy (29), we divide

each n-gon into n triangles, and use a 3-point quadrature rule [54] in the

interior of each subtriangle and 2-point Gauss quadrature along each edge of

the subtriangle (Fig. 5). The 3-point integration rule has the weight A△
e /3

for each integration point, where A△
e is the area of the subtriangle. Hence,

the discrete form of (29) over each subtriangle is:

A△
e

3
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=



















fi(xℓ)

fi(xm)

fi(xn)



















, (30)

where {xℓ, xm, xn} are the three integration points (with equal weights)

within the subtriangle, and this choice ensures that the matrix on the left-

hand side is invertible [38]. The use of numerical quadrature to compute

the integrals on the right-hand side of (29) yields fi(·) in (30). Once these

corrected derivatives are evaluated at the 3n points of each polygon, they

are used to compute the element stiffness matrix, which is assembled to
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Fig. 5: Numerical integration scheme in a polygonal element. Nodes of the

element are shown as filled circles. The filled squares are integration points

within each subtriangle, and the open squares are Gauss points on the edges.

form the stiffness matrix K in (28). For a Poisson problem with a non-zero

f(x), a standard 3-point integration rule [54] within each subtriangle is used

to compute the element force vector, which is assembled to form the force

vector f in (28).

5. Numerical Examples

First, the linear independence (unisolvency of the degrees of freedom) of

the shape functions and the C0-conformity of the max-ent approximation

are established. Then, shape function plots on convex and nonconvex poly-

gons are illustrated to reveal their properties. Finally, Galerkin solutions for

two Poisson problems are presented to demonstrate the accuracy and con-

vergence of the method. In particular, we demonstrate that the numerical

integration scheme presented in Section 5 passes the quadratic patch test, and

then show that optimal rates of convergence (L2 norm and H1 seminorm) of

the max-ent approximation are obtained on uniform refinements of a mesh
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consisting of self-similar trapezoids. On such meshes, it is well-known that

quadratic serendipity isoparametric finite elements yield suboptimal rates of

convergence [39–41]. The maximum-entropy code for Galerkin computations

is developed in Matlab Version 7.14 (R2012a).

5.1. Linear independence of shape functions

As indicated in Section 2.1, for a point x that lies on an edge a that

contains nodes (a, a+n, a+1) (see Fig. 1), the prior weight functions given

in (9) are such that only wa(x), wa+n(x) and wa+1(x) are non-zero. It follows

from (16) and the constraints in (7) that a unique solution is obtained with

φa(x), φa+n(x) and φa+1(x) as the only non-zero shape functions. If the a-th

edge (xa,xa+1) is parametrized by t ∈ [0, 1], then

φa(t) = (1 − t)2, φa+n(t) = 2t(1 − t), φa+1(t) = t2, (31)

which are quadratic Bernstein basis functions [48]. Due to the choice of

the prior, the shape functions herein retain the facet-reducing property of

non-negative linearly complete max-ent shape functions [37].

To establish linear independence of the shape functions, we need to show

that if
∑2n

a=1
φa(x)ua = 0 for all x ∈ Ω̄e, then it implies that ua ≡ 0 for all a.

Proof. We start with

2n
∑

b=1

φb(x)ub =
∑

b∈V

φb(x)ub +
∑

b∈E

φb(x)ub = 0, (32)

where V and E are the vertex and mid-edge nodal index sets, respectively,

which are defined in Section 2. Using (31), we observe that for a ∈ V , the

shape functions satisfy φb(xa) = 0 for b 6= a and φa(xa) = 1. Choosing

x = xa in (32) leads to ua = 0 for all a ∈ V , and (32) becomes

∑

b∈E

φb(x)ub = 0. (33)
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Now, for a, b ∈ E, φb(xa) = 0 for b 6= a and φa(xa) = 1/2 from (31). Choosing

x = xa in (33) results in ua = 0 for all a ∈ E, and therefore ua ≡ 0 for all

a ∈ V ∪ E. 2

5.2. C0 approximation on polygonal meshes

As noted earlier, due to the choice of the priors, only φa(x), φa+n(x),

and φa+1(x) are non-zero along edge a, and we recover the facet-reducing

property of convex approximations [37]. An edge (three nodes on an edge) is

common to two elements in a polygonal mesh, and due to the facet-reducing

property of the shape functions, the approximation is C0-continuous on any

edge, and therefore the max-ent approximation is conforming on polygonal

meshes.

5.3. Plots of shape functions

For the purpose of plotting the shape functions, each n-gon is divided

into n triangles, and a tensor-product m × m grid is used on each trian-

gle. The polygonal elements that we consider are shown in Fig. 6. The

nodal prior weight functions are illustrated in Fig. 2 for two nodes in the

unit square (Fig. 6a). The average number of iterations needed in Newton’s

algorithm to compute the shape functions are listed in Table 1. The shape

function plots are presented in Fig. 7. For the shape function plots, we use

m = 25 and a tolerance of ǫ = 10−10 in the Newton iterations. Use of a

uniform or Gaussian prior leads to non-conformity on polygonal meshes. To

illustrate this, a nodal shape function is plotted in Fig. 7a for a Gaussian

prior (β = 1). Note that φ2(x) is non-zero on edges that do not contain

node 2, which would prevent conformity on a polygonal mesh. In Figures 7b

and 7c, the edge-based nodal prior weight function defined in (8a) and (9)

is used, and the facet-reducing property of the shape functions is observed.

In addition, the minimum value of the shape functions is O(10−3), whereas
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with quadratic serendipity isoparametric elements, the corresponding mini-

mum value is −0.037. In all the plots that appear hereafter, the nodal prior

weight function defined via (8a) and (9) is adopted in the numerical com-

putations. Shape function plots for the pentagon, a saw-tooth (nonconvex)

polygon, and a L-shaped (nonconvex) polygon appear in Figures 7d–7f, Fig-

ures 7g–7i, and Figures 7j–7l, respectively. We observe that along the edge of

a polygon, the maximum-entropy shape functions are identical to Bernstein

basis functions given in (31). In Fig. 8, the derivatives of the shape functions

are depicted (m = 50 is used).

25

(a)

6 2

10

(b)

10

9

17

(c)

4

6

12

(d)

Fig. 6: Quadratic serendipity polygonal elements. (a) square; (b) pentagon;

(c) saw-tooth; and (d) L-shaped.
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Fig. 7: Plots of max-ent shape functions. Square: (a) φ2(x) (Gaussian prior),

(b) φ2(x) (edge-based nodal prior), (c) φ5(x) (edge-based nodal prior). Pen-

tagon: (d) φ2(x), (e) φ6(x), (f) φ10(x). Nonconvex element: (g) φ9(x), (h)

φ10(x), (i) φ17(x). L-shaped element: (j) φ4(x), (k) φ6(x), (l) φ12(x).
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Fig. 8: Derivatives of max-ent shape functions. Square: (a) ∂φ2(x)/∂x and

(b) ∂φ2(x)/∂y. Pentagon: (c) ∂φ2(x)/∂x and (d) ∂φ2(x)/∂y.

The maximum-entropy shape functions are also well-defined on weakly

simple polygons. To illustrate this, we consider the polygons shown in Fig-

ures 9a, 9d, and 9g. In Fig. 9a, three consecutive vertices are collinear on the

bottom edge, whereas in Fig. 9d, five consecutive vertices are collinear on the

bottom edge. In Fig. 9g, three consecutive vertices are collinear on both the

left and right edges. A few shape function plots are depicted in Fig. 9, which

reveal that the shape functions are well-behaved on edges with collinear ver-

tices.

Finally, we approximate the bivariate polynomial u(x) = 1−2x+6y+x2−
3xy + 4y2 on the L-shaped polygon. The error in u is presented in Fig. 10,
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Table 1: Efficiency of Newton’s method for shape function computations.

Element Tolerance Average number of iterations

10−5 3.5

Square 10−10 4.5

10−15 5.1

10−5 4.1

Pentagon 10−10 5.1

10−15 5.8

10−5 4.1

Saw-tooth 10−10 5.1

10−15 5.8

10−5 2.6

L-shaped 10−10 3.2

10−15 3.6

which verifies the quadratic completeness of the max-ent approximation.

5.4. Quadratic patch test

Consider the Laplace equation: ∇2u(x) = 0 in Ω = (0, 1)2, with essen-

tial boundary condition g(x) = 1 − x + 5y − 2xy − 4x2 + 4y2 imposed on

∂Ω. The exact solution is: u(x) = g(x). For the patch test, ukufive meshes

are considered (see Fig. 11), and the numerical integration scheme presented

in Section 4 is used. For the patch test and for the convergence studies (Sec-

tion 5.5), a tolerance of ǫ = 10−14 is used in the Newton iterations to evaluate

the shape functions. In Table 2, the relative error in the L2 norm and the

H1 seminorm are presented. We observe that the patch test is passed. The

results reported in Table 2 are significantly more accurate than those realized

in a meshfree method based on moving least squares approximants [38].
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Fig. 9: Plots of max-ent shape functions on weakly simple polygons. The

vertices of the polygon are shown as open circles. (a)–(c) Square with three

collinear vertices on the bottom edge. φ5(x) and φ7(x) are shown; (d)–(f)

Square with five collinear vertices on the bottom edge. φ3(x) and φ9(x) are

shown; and (g)–(i) Pentagon with three collinear vertices on the left and right

edges. φ7(x) and φ13(x) are shown.

5.5. Rate of convergence for Poisson problem

On quadrilateral meshes, 9-node biquadratic isoparametric finite elements

deliver optimal convergence rates of 3 and 2 in the L2 norm and the H1
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Fig. 10: Approximation error (u(x)−uh(x)) over the polygon for the bivariate

polynomial u(x) = 1 − 2x + 6y + x2 − 3xy + 4y2.

Table 2: Relative error norms in the quadratic patch test.

Mesh
||u − uh||2,Ω

||u||2,Ω

|u − uh|1,Ω

|u|1,Ω

11a 2.0 × 10−15 2.7 × 10−14

11b 2.6 × 10−15 2.5 × 10−14

11c 2.6 × 10−15 1.7 × 10−14

11d 2.9 × 10−15 3.8 × 10−14

11e 4.0 × 10−15 1.0 × 10−13

seminorm, respectively. However, the rates of convergence for the quadratic

serendipity isoparametric element are suboptimal on meshes with non-affinely

mapped quadrilateral elements [39, 40]. Arnold and Awanou [41] provide a

general definition for the space of serendipity finite elements in two- and

higher-dimensions. The inability to represent arbitrary bivariate functions

on general quadrilateral meshes, stiffening due to element distortion, and its

poor performance for constrained media problems are some of the deficiencies

of the serendipity element [60]. Lee and Bathe [61] perform a detailed study
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(a) (b) (c)

(d) (e)

Fig. 11: Patch test. (a) Uniform mesh; (b) Self-similar trapezoidal mesh;

(c) Polygonal mesh with nonconvex elements; and (d), (e) Convex polygonal

meshes generated using maximal Poisson-sampling algorithm.

on the effects of element distortion using quadratic (Lagrangian and serendip-

ity) isoparametric quadrilateral finite elements. The issue of mesh-distortion

in isoparametric finite elements with potential remedies is discussed by Ra-

jendran [62].

We adopt the self-similar trapezoidal meshes used in References [3, 40]

to establish the rate of convergence of the quadratic max-ent approximation.

Consider the Poisson problem in (26) with f(x) and g(x) chosen so that the

exact solution is: u(x) = x3 + 5y2 − 10y3 + y4 [40]. The meshes considered

in the convergence study are partitions of the domain into m×m congruent
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Table 3: Relative error norms for Poisson problem on trapezoidal meshes.

m Number of nodes
||u − uh||2,Ω

||u||2,Ω

Rate
|u − uh|1,Ω

|u|1,Ω

Rate

2 21 6.1 × 10−2 – 1.1 × 10−1 –

4 65 6.8 × 10−3 3.16 2.6 × 10−2 2.02

8 225 8.0 × 10−4 3.10 6.4 × 10−3 2.03

16 833 9.6 × 10−5 3.05 1.6 × 10−3 2.02

32 3201 1.2 × 10−5 3.03 4.0 × 10−4 2.01

64 12545 1.5 × 10−6 3.01 9.9 × 10−5 2.00

trapezoids that are similar to the trapezoid with vertices at (0, 0), (1/2, 0),

(1/2, 2/3), and (0, 1/3) [40]. The meshes for m = 2, 4, 8, 16 are depicted

in Fig. 12. The relative error in the L2 norm and the H1 seminorm are

listed in Table 3, and the convergence plots are illustrated in Fig. 13. The

convergence rates of the max-ent polygonal finite element method are 3 and 2

in L2 and H1 Sobolev norms, respectively, which are in agreement with theory

for the Poisson equation using second-order complete approximations.

Fig. 12: Self-similar trapezoidal meshes for m = 2, 4, 8, 16.

Now, we perform the convergence study on polygonal meshes, and use

five meshes that are constructed using ρk =
√

2/22+k (k = 1, 2, . . . , 5) in the

maximal Poisson-sampling algorithm. The meshes are depicted in Fig. 14.

The relative error norms are listed in Table 4, and the convergence plots

are presented in Fig. 15. We obtain numerical rates of convergence of 3 and

2 in the L2(Ω) norm and the H1(Ω) seminorm, respectively, which are in
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Fig. 13: Rates of convergence for Poisson problem on trapezoidal meshes.

agreement with theory.

6. Concluding Remarks

In this paper, we have provided a construction for C0 quadratic serendip-

ity shape functions on planar (convex and nonconvex) polygons. To this

end, we determined the shape functions via the maximization of a concave

functional subject to linear constraints. We recast the objective functional

of Bompadre et al. [1] in terms of the relative entropy with nodal prior

weight functions, and used the linear constraints for quadratic complete-

ness proposed by Rand et al. [3]. The nodal prior weight functions were

selected with the appropriate zero-set on the boundary edges [2] so that a
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Fig. 14: Polygonal meshes used for the Poisson problem.

Table 4: Relative error norms for Poisson problem on polygonal meshes.

Number of nodes
||u − uh||2,Ω

||u||2,Ω

Rate
|u − uh|1,Ω

|u|1,Ω

Rate

127 7.1 × 10−3 – 4.3 × 10−2 –

485 8.0 × 10−4 3.17 1.0 × 10−2 2.05

1809 1.1 × 10−4 3.00 2.7 × 10−3 2.02

7100 1.3 × 10−5 3.03 6.7 × 10−4 2.07

27684 1.9 × 10−6 3.01 1.7 × 10−4 2.07
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Fig. 15: Rates of convergence for Poisson problem on polygonal meshes.

uniqe solution (Bernstein basis functions) was realized on each edge. The

dual (unconstrained convex minimization) problem was solved by Newton’s

method.

First, linear independence of the shape functions and conformity of the

max-ent approximation were established. Plots of the shape functions and

the approximation of a bivariate polynomial were presented to affirm the

reproducing properties of the shape functions. Applications of the max-

ent shape functions in a Galerkin method were presented. To realize high-

accuracy and efficiency in the numerical integration, we tailored the corrected

integration scheme proposed by Duan et al. [38] for polygonal elements. The

quadratic patch test was passed to near machine-precision accuracy, and for
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a Poisson problem on polygonal meshes as well as on quadrilateral meshes

comprised of congruent trapezoids, the method delivered optimal rates of

convergence of 3 and 2 in the L2(Ω) norm and the H1(Ω) seminorm, re-

spectively. On self-similar trapezoidal meshes, it is well-established that

quadratic serendipity isoparametric finite elements yield suboptimal rates

of convergence [40]. The max-ent formulation is straightforward and holds

promise for further extensions to higher-order complete shape functions on

two- and three-dimensional elements. While retaining the advantage of re-

quiring fewer degrees of freedom than tensor-product Lagrange shape func-

tions, it can yield optimal convergence rates in Sobolev norms and provide

accurate solutions even on distorted meshes, thus overcoming some of the

deficiencies of serendipity isoparametric finite elements.
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